
Improved inference and autotyping
in EEG-based BCI typing systems

Andrew Fowler†, Brian Roark†, Umut Orhan◦, Deniz Erdogmus◦, Melanie Fried-Oken†
†Oregon Health & Science University ◦Northeastern University

ABSTRACT
The RSVP Keyboard

TM
is a brain-computer interface (BCI)-based

typing system for people with severe physical disabilities, specif-
ically those with locked-in syndrome (LIS). It uses signals from
an electroencephalogram (EEG) combined with information from
an n-gram language model to select letters to be typed. One char-
acteristic of the system as currently configured is that it does not
keep track of past EEG observations, i.e., observations of user in-
tent made while the user was in a different part of a typed message.
We present a principled approach for taking all past observations
into account, and show that this method results in a 20% increase
in simulated typing speed under a variety of conditions on realistic
stimuli. We also show that this method allows for a principled and
improved estimate of the probability of the backspace symbol, by
which mis-typed symbols are corrected. Finally, we demonstrate
the utility of automatically typing likely letters in certain contexts,
a technique that achieves increased typing speed under our new
method, though not under the baseline approach.

Categories and Subject Descriptors
H.5.2 [User Interfaces]: Input devices and strategies, natural lan-
guage; I.2.7 [Natural Language Processing]: Language models;
K.4.2 [Social Issues]: Assistive Technologies for Persons with Dis-
abilities

General Terms
algorithms, experimentation

Keywords
brain computer interfaces, language models, text entry

1. INTRODUCTION
Communicating by text is a ubiquitous part of modern life, from
composing text documents or emails via a QWERTY keyboard to
SMS messages via mobile devices. Many people with physical dis-
abilities also rely on text entry for face-to-face interaction, produc-
ing text that is then synthesized into speech by their speech generat-
ing devices. Often the disabilities preclude the use of standard text

entry interfaces due to the physical requirements of directly select-
ing symbols from a keyboard. Without sufficient hand or pointer
control to select individual keys in a keyboard or make other se-
lecting gestures, such individuals often rely on keyboard emulation
methods, whereby a single binary switch provides access to desired
symbols via an interface that scans through alternatives. For exam-
ple, letters can be arranged on a matrix or grid, and rows or columns
highlighted until the intended symbol is identified by the selected
row and column (known as row/column scanning). Such interfaces
have been around since the 1970s, e.g., the Tufts Interactive Com-
municator (TIC) [2, 3].

The binary switch used to indicate selection of a scanned item can
be placed to best leverage the capabilities of the individual, i.e.,
it can be triggered based on an eyeblink, movement of an eye-
brow or jaw, or a breath, among other options. For those with
the most severe movement impairments, e.g., those with locked-in
syndrome (LIS) resulting from ALS or a brain stem stroke, no voli-
tional switch may be available. In these cases, non-invasive brain-
computer interfaces have been developed to allow for text entry [8,
14, 11]. For several such systems, electroencephalography (EEG)
is used to discover user intent by detecting responses to visual stim-
uli, such as the row/column scanning described above. Detection
of a positive response corresponds to a binary switch activation, al-
lowing text entry much as with more conventional switches. How-
ever, in this case the activation does not require volitional effort;
rather it is the result of involuntary responses to stimuli. This makes
these technologies ideal for individuals who cannot effectively pro-
duce reliable volitional selection movements.

The main challenge for these BCI typing systems is that event de-
tection from EEG signals is a very difficult classification task, even
with state-of-the-art signal processing techniques. Consequently,
typing with such a system can be both error-prone and slow. Cur-
rent systems have methods for addressing the inherently low sig-
nal strength of the EEG. One is to make repeated observations
of the brain signal, relying on certain independence assumptions
to increase confidence [8]. Another is to use a language model
prior to improve the posterior probability distribution over letters
(or words) given the context in the typed string [11]. In this paper
we examine inference methods making use of both techniques.

The RSVP Keyboard
TM

BCI typing system [11] combines a lan-
guage model prior distribution over symbols with repeated EEG
observations to facilitate accurate typing. Presentation follows a
rapid serial visual presentation (RSVP) paradigm, which involves
linear visual scanning of one symbol at a time. Figure 1 shows the
interface of the system, with a single symbol in the center of the dis-

Figure 1: The RSVP Keyboard
TM

interface, with the candidate symbol
in the center of the screen, and typed message to its left.

play rather than a grid. To perform text entry, one attends to a rapid
sequence of individual symbols at the center of the screen, looking
for the target symbol. When the user recognizes the target symbol
an event related potential (ERP) is evoked – the well-known P300,
occurring 300ms after stimulus onset – which can be detected from
the EEG signals. This detection is made via classifier fusion with a
language model: when the posterior probability of an event associ-
ated with a symbol is greater than a threshold, that symbol is typed;
otherwise another sequence of EEG observations is obtained.

Currently, the RSVP Keyboard assigns posterior probabilities to
the symbols in each context independently of observations taken
earlier in the typing session. In this paper, we propose an approach
that maintains the posterior probabilities over all observed contexts,
continuing to update them and take them into account during infer-
ence, even if they are no longer consistent with what has actually
been typed. High likelihood for the backspace symbol (used to
delete previously typed symbols) in the current context is evidence
for alternate continuations of earlier contexts, and we demonstrate
how to efficiently maintain and allocate that probability mass. For
example, if the typed string is core and there is high likelihood of
backspace, then the letters other than e should have higher proba-
bility when returning to the context cor.

We efficiently maintain posterior probabilities of the symbols for
all contexts up to the length of the longest typed context in the
sentence, and update and use these posterior probabilities during
inference. Among other things, this provides a principled estimate
of the backspace probability. Further, we demonstrate – via sim-
ulation – additional typing speed improvements using autotyping,
whereby symbols with probability above threshold are typed with-
out requiring EEG observations in that context. Autotyping with
the baseline system is shown to provide no gain in typing speed.

2. BACKGROUND
2.1 Language models in AAC Typing Systems
Communication with AAC devices can be significantly slower than
written or spoken language. As a result, both users and designers
of assistive technologies often place great value on improving com-
munication speed and accuracy. Predictive language models are a
natural fit for this problem, to the extent that they can retrieve likely
continuations of a message in a way that requires fewer gestures
(keystrokes) to select than if they were produced letter-by-letter.
Word completion is a component of almost every commercial AAC
typing system in use today, and this has been the case since the early
days of such systems [6].

The idea behind word completion is to use an n-gram language

model trained on a large corpus to help predict the next word (or
current word in progress) based on the last few words of context in
the typed string. Very often a specific area of the screen is reserved
specifically for a set of probable next words, which can be selected
directly by the user in order to type one of them without taking
time on the intervening letters, or selected via scanning that region
in a keyboard emulation system. Higginbotham [5] showed that
such word completion lists can provide about 40-50% keystroke
savings1 over systems without word completion. One important
caveat of word completion is that more cognitive effort is required
on the part of the user to keep track of dynamically changing word
predictions, a fact which [7] has shown to actually decrease user
performance somewhat in such systems. Nevertheless, it is a ubiq-
uitous feature in AAC typing systems and found by many to be of
high utility.

Language modeling can also be leveraged to speed typing in binary
switch scanning systems, of the sort described in the introduction.
For row/column scanning methods, likely symbols can be moved to
the upper left corner of the grid so that they require less scanning
to select. The TIC system cited above [2, 3] organized the grid
based on overall symbol frequency so that the grid remained static.
Lesher et al. [9] described a technique for dynamically rearranging
the grid based on contextual language models, but showed that the
large cognitive load involved in keeping track of an ever-changing
letter grid made this method dispreferred. Huffman scanning [13,
12] is a method for scanning according to Huffman codes derived
from contextual language models without dynamically reordering
the spelling matrix/grid, thus requiring fewer keystrokes to indicate
likely letters.

In the systems described in this paper, the language model is used
in two ways. First, it serves as a prior model for intent detection
classification in the RSVP Keyboard, as described in Section 2.2.
This can speed typing of likely symbols by reducing the number of
symbol sequence presentations required for the posterior probabil-
ity to rise above the threshold. Second, if we reduce the minimum
number of presentations from 1 to 0, the system can type a symbol
based solely on the language model probability, provided it is above
the threshold, resulting in autocompletion. This is a similar func-
tion to word completion mentioned earlier in this section, and can
speed typing by reducing the number of symbol positions requiring
symbol scanning. Details on the linear scanning system used by the
baseline RSVP keyboard are presented in the next section.

This approach is different from, and complementary to, the lan-
guage modeling methods presented in [10], which also applied im-
proved inference methods to the RSVP Keyboard. Briefly, that
work focused on improved priors derived from the language model,
while this work is focused on maintaining posterior probabilities
for many possible alternative strings in case they are subsequently
revisited.

2.2 The RSVP Keyboard
The RSVP Keyboard [11] is a binary typing system consisting of
a cap of 10-20 electrodes for measuring brain signals on the scalp,
and a visual display presenting candidate symbols, as shown in Fig-
ure 1. The symbol set consists of 26 letters in the alphabet plus a
spacebar symbol (“_”) and a backspace symbol (“←”) that permits
deletion of the previously typed symbol. All 28 symbols are pre-

1Keystroke savings is the percentage savings in keystrokes versus
typing letter-by-letter.

sented in sequence in random order at 2.5 Hz, i.e., 400 ms on screen
display for each symbol.2 After the full sequence of symbols has
been presented, a classifier is used to detect the presence of a P300
event, under the assumption that one such event has occurred (cor-
responding to the target symbol). A posterior probability is calcu-
lated, which combines, via naïve Bayesian fusion, the probability
from each sequence presentation with the prior probability from
the language model (see details below). If the posterior probability
of any symbol is above a parameterized threshold value, then that
symbol is typed.3 Otherwise, another sequence of the symbol set is
presented in random order.4 Once a symbol is typed (or deleted),
the display and internal context state is updated and scanning con-
tinues at the next position.

Beyond EEG signal capture and stimulus display, the RSVP Key-
board system consists of three key parts: the ERP classifier; the lan-
guage model; and the fusion of the evidence for decision on the tar-
get symbol. In addition, there are several system meta-parameters
that control functionality. We present each of these in turn.

2.2.1 ERP Classification
The input to the ERP classifier is a set of features extracted from
the EEG signals. For each stimulus in the sequence (28 symbols),
the signals are extracted from the onset of the symbol presentation
until 500ms after presentation, since this window is expected to
include the relevant signal components associated with the P300
ERP. Bandpass filters and linear dimensionality reduction methods
(PCA) are applied to derive a feature vector to be given to the binary
classifier (target/non-target).

Regularized Discriminant Analysis (RDA) [4] is used to generate
a likelihood for both classes (target/non-target) for each of the 28
stimuli in the sequence. RDA is a modified version of a quadratic
discriminant analysis model which is made less susceptible to sin-
gularities in the covariance matrices via regularization and shrink-
age. The class feature vectors are assumed to conform to multi-
variate normal distributions. This model can be used to generate
classification scores (via log-likelihood ratios) or a probability dis-
tribution over stimuli. For more details, see [11].

For this paper, the ERP classifier remains unchanged from the cur-
rent RSVP Keyboard system. For simplicity of later notation, let
ERPij(x) be the likelihood from sequence presentation j that x is
the target symbol at position i in the typed string, as determined by
the ERP classifier. Then, after k sequences have been presented at
position i, ERPk

i (x) is the likelihood of symbol x at position i,

ERPk
i (x) =

k∏
j=1

ERPij(x) (1)

2.2.2 Language Modeling
The language model used in the RSVP Keyboard is a 6-gram character-
based language model, i.e., the probability of symbol x at posi-
tion i (denoted xi) is conditioned on the previous 5 symbols. Let
2Presenting subsets of the full set of symbols and at a faster rate
of presentation (5 Hz) are methods currently under exploration, be-
yond the scope of this paper.
3The backspace (“←”) symbol is not typed, rather it causes the last
typed letter to be deleted.
4Note that the randomness of the sequence is important, since
the strength of the P300 response is partially based on the unpre-
dictability/surprise on the part of the user when the target stimulus
appears.

hi−k
i = xi−k . . . xi−1 be the context (or history) of length k of the

typed string at position i. Then

P(xi | hi−k
i) = λ(hi−k

i) P̂(xi | hi−k
i)

+ (1−λ(hi−k
i)) P(xi | hi−k+1

i) (2)

where P̂(xi | hi−k
i) is the raw relative frequency as found in the

training corpus, and λ(hi−k
i) is a mixing parameter between 0 and

1, estimated using the version of Witten-Bell smoothing [16] from
[1], as detailed in [12].

For the current RSVP Keyboard system, and unchanged in this pa-
per, the language model was trained on a subset of the New York
Times portion of the English Gigaword corpus (LDC2007T07).
Also included in the corpus were 112 thousand words from the
CMU Pronouncing Dictionary,5 and several repeated lines of text
generated by an actual user of AAC technology. The training data
was text-normalized to de-case letters, and several other procedures
were performed in order to reduce the possibility of duplicate sen-
tences or articles appearing in the corpus, as presented in [12].

Each symbol is scored by the language model using a likelihood
ratio of the symbol being the target versus the symbol not being
the target, and then normalized over the symbol set. Since this
language model prior is not being changed for this paper, for nota-
tional simplicity let LMi(x) be the prior that symbol x is the target
symbol at position i, given what has already been typed.

2.2.3 Language Model and EEG Fusion
At position i in the typed string, a posterior probability P of each
symbol x in the symbol set can be calculated via Bayesian fusion
of the language model and ERP classifier scores, as follows

P j
i (x) = ERPj

i (x) · LMi(x) (3)

Note that P 0
i (x) = LMi(x), and that

P j
i (x) = P j−1

i · ERPij(x) (4)

Once the normalized posterior P k
i (x) is greater than the decision

threshold, the symbol x is typed.

2.2.4 System meta-parameters
The RSVP Keyboard relies upon several meta-parameters for oper-
ation. In this section, we introduce each of these parameters, and
the settings in the current version of the system.

• Decision threshold: If the posterior probability of a symbol
is greater than the decision threshold θ, then that symbol is
typed. In the current system, that threshold is set at θ = 0.9.
• Minimum Sequences: The minimum number of sequences

to show before typing. In the current system, this parameter
is set to 1, meaning that at least one sequence must be pre-
sented to the user prior to typing a symbol. If this parameter
is set to 0, it means that if P 0

i (x) > θ then the symbol will
be typed based solely on evidence from the language model
(autotyping).
• Maximum Sequences: The maximum number of sequences

to show before typing. If this number is reached and no sym-
bol exceeds the decision threshold θ, the most probable sym-
bol is typed. The current system sets this to 3.

5www.speech.cs.cmu.edu/cgi-bin/cmudict

• Backspace Probability: The current system uses a fixed
probability β = 0.05 of the backspace symbol in every con-
text.
• LM Damping: This is a damping factor used on the lan-

guage model probability distribution. A value of λ means
we multiply log probabilities from the language model by λ.
In the current system, λ = 0.5.

3. METHODS
In this paper, we present new methods of inference for the RSVP
Keyboard. In particular, we present new ways to calculate the pos-
terior probability of different possible letter strings. In this section,
we present our approach algorithmically, then step through a sim-
ple example to illustrate its operation.

3.1 Improved Inference
In the current RSVP Keyboard system, once a letter is typed (or
deleted), the system advances to the new position and reconsid-
ers the 28 possible options (26 letters, whitespace and backspace),
without taking into account previous events. In our updated ap-
proach, once a possible string has been considered, its posterior
probability is maintained even if another symbol is typed. The
typed symbol at position i in the string generally has a posterior
probability less than 1.0, meaning that other options retain some
probability mass. Use of the backspace symbol as a deleting mech-
anism allows the system to go back and potentially access those
alternate strings, hence we maintain their non-zero posterior prob-
ability. In fact, if we accrue additional evidence for the backspace
symbol through ERP detection, that probability mass should be al-
located to these alternate strings, since it is evidence that the current
string is not the intended string but rather one of the alternates.

We present our algorithm formally in Figure 2, and describe it here
less formally, with references to specific lines in the algorithm. To
copy a given text T using a symbol vocabulary V , we provide three
metaparameters: a threshold parameter θ to determine the required
probability of a symbol to type it; and a minimum and maximum
number of iterations of sequence presentation to gather ERP evi-
dence for the symbols, as discussed earlier. Note that the set V in-
cludes every symbol that will be typed, i.e., not backspace, which
is a special symbol denoting that a previously typed symbol should
be deleted. In our case, V includes the letters a-z plus whitespace.

The algorithm maintains a set of context strings S, initialized with
the empty string (with probability 1) on line 2 of the COPYTEXT
algorithm. The set S is the set of strings that are one symbol exten-
sions of strings that have actually been typed at some point in the
session. Each of the strings in the set is maintained with a poste-
rior probability by the algorithm. Until the input text T is correctly
typed, we must decide at each point which of the 28 symbols to
choose. If each member of V is given an index from 1 to |V |, and
we let 0 be the index of the backspace symbol, we can establish
the prior probability for each of these in the current context. Scan-
ning through all strings s (with associated probabilities p) in the set
S (lines 6-15 of the COPYTEXT algorithm in Figure 2), there are
three possible cases for each stored string: 1) the typed string t is
not a prefix of s (line 7), in which case the posterior probability p
of that string is allocated to backspace (index 0); 2) the string s is
exactly the typed string t (line 9), in which case s has never been
expanded before and must be expanded (see below); or 3) the string
s is longer than t (line 14), meaning that the posterior probability
p of s should be added to that of whatever symbol from V comes
after the prefix t in s. For case 2, the string s is removed from the

UPDSYMBOLPROBS(V,P, i, θ,min_iter, max_iter)
1 j ← 0

2 for k = 0 to |V | do � Let v0 = backspace
3 L[k]← 1 � Initialize likelihoods to 1
4 while j < max_iter and (max(P) < θ or j < min_iter) do
5 j ← j + 1 � Present another sequence to user
6 for k = 0 to |V | do � Let v0 = backspace
7 L[k]← L[k] · ERPij(vk) � Update likelihoods to return
8 P[k]← P[k] · ERPij(vk) � See Equation 4
9 P ← NORMALIZE(P)
10 return (P,L)

COPYTEXT(T, V, θ,min_iter, max_iter) � Given a text T to copy
1 t← ε � Initialize copied text to empty string
2 S ← {(t, 1.0)} � Initialize set of context strings (string, prob)
3 while T 6= t do
4 for k = 0 to |V | do � Let v0 = backspace
5 P[k]← 0 � Initialize probabilities to zero
6 for each (s, p) ∈ S do � for all existing contexts
7 if s[1, |t|] 6= t then � t is not a prefix of s (inconsistent)
8 P[0]← P[0] + p � contributes to backspace probability
9 else if s = t then � t has not been extended before
10 REMOVE (s, p) FROM S
11 for each vk ∈ V (1 ≤ k ≤ |V |) do
12 P[k]← LM|t|+1(vk) · p � Initialize with LM prior
13 S ← S ∪ {(s · vk,P[k])} � extend s by each symbol
14 else for vk = s[|t|+ 1, |t|+ 1] � s[0, |t|+ 1] = t · vk
15 P[k]← P[k] + p � Add probability (already extended)
16 P ← NORMALIZE(P)
17 (P,L)← UPDSYMBOLPROBS(V,P, |t|+ 1, θ,min_iter, max_iter)
18 for each (s, p) ∈ S do � Update all context probs
19 if s[1, |t|] = t then � s is consistent with t
20 for vk = s[|t|+ 1, |t|+ 1] � vk is symbol following t
21 (s, p)← (s, p · L[k])
22 else (s, p)← (s, p · L[0]) � s is inconsistent with t
23 NORMALIZE(S)
24 v̂ ← argmaxvk∈V (P) � System detected target symbol
25 if v̂ = v0 then � Backspace was selected
26 t = t[1, |t| − 1] � Remove final symbol from t
27 else t = t · v̂ � Type symbol v̂ in copied text t

Figure 2: Improved inference algorithm for copying text. For
strings s, t, s · t denotes string concatenation. For string s =
s1 . . . sn let s[i, j] be the substring si . . . sj . For simplicity, if
j > i, then s[i, j] = ε; and if j > |s|, then s[i, j] = s[i, |s|].

set S, and the set of strings resulting from concatenating each sym-
bol x ∈ V to s are added to S, with the appropriate probability as
assigned by the language model. Finally, these prior probabilities
are normalized for use by the LM and ERP fusion decision process.

The algorithm UPDSYMBOLPROBS at the top of Figure 2 takes
as input the symbol vocabulary, the probability array calculated as
described above, the position in the string and the relevant meta-
parameters, and returns an updated (normalized) posterior proba-
bility array and an ERP classifier-based likelihood array L, which
does not include the prior probabilities. After the symbol sequences
have been presented the requisite number of times, the strings in
set S are scanned again, to update their posterior probabilities with
the new information (lines 18-22 of the COPYTEXT algorithm in
Figure 2). For strings s which have t as a prefix, the posterior
probability is updated with the relevant symbol’s likelihood at that
position from the recent round of symbol sequence presentations.
Otherwise, the posterior probability is updated with the likelihood
of the backspace symbol. Finally, the posterior probabilities of all
strings in the set are normalized.

typed context LM ERP observation normalized
string string prob. 1 2 3 posterior
ε A 0.4 0.2 0.14

B 0.6 0.8 0.86
Action: type B
B A 0.4 0.2 0.1 0.03

BA 0.4 0.8 0.7 0.85
BB 0.2 0.8 0.2 0.12

Action: type A
BA A 0.4 0.2 0.1 0.95 0.17

BAA 0.3 0.8 0.7 0.03 0.11
BAB 0.1 0.8 0.7 0.02 0.03
BB 0.2 0.8 0.2 0.95 0.69

Action: delete A

Table 1: Probabilities for example

After the posterior probabilities have been calculated for all strings
in the set, the system detected symbol is determined. If that symbol
is backspace, then the typed string t is shortened by removing its
last symbol. Otherwise, the detected symbol is appended to t.

For this paper, we extended the above algorithm by pruning ex-
tremely unlikely strings from the set S. Any string with a proba-
bility less than e−30 was removed from S, resulting in increased
efficiency and no typing performance difference.

3.2 Example of improved inference
For this example, we will assume an alphabet of two symbols (A
and B), and our observations from the EEG will be of the form

ERP observation j = [L(A),L(B),L(backspace)],

where L(x) is the normalized conditional likelihood that the next
symbol is x based on the ERP classifier. Table 1 presents the prob-
abilities used to maintain the normalized posterior for each context
string in the set S. For this example, θ = 0.8 will be the decision
threshold.

We begin with no letters currently typed, and no observations made.
The first step is to query the language model for priors across po-
tential next letters. The first two rows of Table 1 show example LM
probabilities for the two symbols in the alphabet. Since no letter
has a posterior probability above the threshold value, we must now
make an observation. Note that when no letters have been typed,
the probability of backspace must be zero.

ERP observation 1 = [0.2, 0.8, 0.0]

We add this to our table, calculate the product across each row, then
normalize to get an updated posterior probability. The probability
of the string B now exceeds threshold, so we type it. We can also
now calculate the posterior probability of backspace, which is
the sum of all posterior probabilities that do not have our currently
typed string (B) as a prefix. In this case, it is equal to 0.14.

This leads to rows 3-5 of Table 1. Since B has been typed, we ex-
pand the context strings starting with B and re-query the language
model. We need not expand the A row, but we retain it for our cal-
culations – it now falls in the ‘inconsistent’ class of context strings
referred to in the COPYTEXT algorithm in Figure 2. Note that score
of B from ERP observation 1 is shared by both new expanded con-
text strings BA and BB.

Since no string probability exceeds threshold based just on the LM
probability and ERP observation 1, we make another ERP observa-
tion:

ERP observation 2 = [0.7, 0.2, 0.1]

When adding this observation to our table, we applyL(backspace)
= 0.1 to A, since it falls in the set of strings that are inconsistent
with the currently typed string.

Based on posteriors calculated after ERP observation 2, A is the
symbol above threshold that is typed, making the currently typed
string BA. Then we expand again. Note that the probability of
backspace – calculated by summing the posteriors of all context
strings that are inconsistent with the typed string (lines 7-8 in the
COPYTEXT algorithm in Figure 2) – is now 0.03 + 0.12 = 0.15.

Suppose the next observation strongly favors typing backspace:

ERP observation 3 = [0.03, 0.02, 0.95]

The newly expanded table with ERP observation 3 can be seen in
rows 6-9 of Table 1. The probability of backspace is now 0.17+
0.69 = 0.86, so we type it, taking our typed string back to B. For
the next step of the algorithm after deleting the symbol, the prior
probabilities for A and Bwould now be calculated by summing over
already expanded context strings (lines 14-15 in the algorithm).

3.3 Testing and Simulation
For the experiments in this paper, we used a simulation system
that generates artificial EEG score vectors from prerecorded EEG
data. These are sampled from a kernel density estimation of the
target/non-target classes generated by the RDA classifier on data
from real users of the system. A separate model is trained for each
individual user during a calibration phase, and the area under the
receiver operating characteristic curve (AUC) is calculated using
cross-validation. This value generally corresponds to the ease with
which the ERP classification system can classify the EEG signals
from that particular user, hence we use the score to characterize
the user in terms of how many symbol presentations are typically
required to reach threshold. We used five different user sessions
as simulation data, each with a different AUC value, ranging from
quite high (0.90) to relatively low (0.71), thus simulating several
diverse use scenarios. In each condition, we ran 100 Monte Carlo
simulations using this data.

We used three test sets: The main test set was a set of personal
emails set aside for our use from a person with LIS, who we will
refer to as GB. This set contained 1,128 lines of text, about 10,000
words. We also tested two other sets, one with around 35,000 lines
of New York Times newswire text, and 10,000 words from a “sim-
ulated” AAC-like corpus created through crowdsourcing [15].

Grid search parameter optimization was carried out for both the
baseline (current) system and the system with improved inference
(see results in the next section), for all of the system meta-parameters
other than minimum sequence presentations. We tried 1960 com-
binations of parameters, each varying by regular intervals within
their natural range, over five simulations each on the held-out set,
which consisted of 50 reserved lines from the GB email corpus.

We used two evaluation metrics. The first is sequences presented
per letter. This records the number of observations (sequences
shown) divided by the total number of characters in the test set.
The second is letters per minute, which is an estimated typing rate

System Configuration AUC 1.00 AUC 0.90 AUC 0.83 AUC 0.80 AUC 0.75 AUC 0.71
Current 1.00 2.34 2.87 7.77 FAILURE FAILURE
Current Opt. 1.00 2.05 2.39 3.74 5.22 6.18
Current Opt+Auto FAILURE 2.09 2.46 3.83 5.27 6.29
Current Opt+Back 1.00 1.98 2.32 3.64 5.10 6.14
Current Opt+Auto+Back FAILURE 1.84 2.17 3.51 4.89 6.03
Best Configuration Pct. 0.0% 21% 24% 54% N/A N/A
Improvement over Current

Table 2: Simulated Sequences per Letter on the GB email test set for various AUC values and RSVP Keyboard parameterizations,
using current system inference. 100 Monte Carlo simulations in every condition.

for the test set, based on an RSVP paradigm of 200 milliseconds
per symbol, 28 symbols, and five seconds between sequences.

4. RESULTS
4.1 Current system parameter optimization
Before examining the impact of our improved inference algorithm
on the efficiency of typing with the RSVP Keyboard, we first ex-
amined the impact of optimizing system meta-parameter settings,
along with some other system adjustments suggested by our algo-
rithm. In such a way, we can compare against a number of baseline
system configurations, to better judge the ultimate utility of our al-
gorithm in the space of possible configurations.

Table 2 presents the mean number of sequence presentations re-
quired per letter in the GB email testset under five configurations of
the current system, for varying AUC values. We include AUC=1.0
(a perfect classifier, always giving all of the probability mass to
the correct symbol) to illustrate behavior of the system under ideal
conditions. The first row shows the current system, using meta-
parameters as described in Section 2.2.4. Even though the max-
imum sequences parameter is set to 3, more sequences may be
required per letter because of errors in typing followed by repair.
Note that, under this scenario, the simulations for users with AUC
less than 0.8 fail to type the test corpus, due to the inability to re-
cover from errors. In such a scenario, the fixed backspace proba-
bility is likely too low to adequately recover.

We next performed a grid search for optimized meta-parameter set-
tings for each AUC level on a held-out data set, as described in
the previous section. The minimum sequences parameter is left at
1 for the Current Opt. row of Table 2; setting the minimum se-
quences parameter to 0 yields an autotyping system, and results for
that condition are shown in the Current Opt+Auto row. Optimizing
these meta-parameters yields large improvements, particularly for
the lower AUC scenarios – halving the number of sequence pre-
sentations for AUC=0.8 and providing a system configuration for
the lower AUC values that permit task completion. Interestingly,
autocompletion yields no gains in any condition, and in fact causes
failure in the perfect classifier condition (AUC=1.0). This is due

to endless loops that occur when an incorrect symbol is autotyped,
followed by a (correct) backspace – which again yields a state that
will autotype the same incorrect symbol. This scenario illustrates
the importance of keeping track of prior events in assigning proba-
bilities to subsequent events in this system.

Finally, we examined the current RSVP Keyboard system in a con-
figuration where the probability of backspace is not fixed, but rather
is related to the posterior probability when the previous symbol was
typed. If p was the posterior probability of that last-typed symbol
(either above threshold or highest probability after the maximum
number of sequences have been presented), then the probability of
delete at the next position is set to 1−p. This configuration is pre-
sented in the Current Opt+Back row of Table 2; and is combined
with autocompletion in the Current Opt+Auto+Back row. Other
than for the hypothetical perfect classifier, this dynamic backspace
probability yields modest improvements over the standardly opti-
mized configuration; and with the dynamic backspace probability,
autocompletion now yields some additional improvements. If we
look at the percentage improvement of the best system configu-
ration over the current system configuration, we find robust im-
provements for all subject-derived AUC levels, with dramatic im-
provements for the lower AUC levels. We can now use this as our
baseline against which to compare our improved inference perfor-
mance.

4.2 Improved inference
Table 3 shows the results achieved with our improved inference al-
gorithm versus both the Current Opt. configuration and the best
performing configuration from Table 2 of the current RSVP Key-
board system. For all conditions other than the perfect classifier
(AUC=1.0), our algorithm with no autotype (minimum number of
presented sequences set to 1) achieves modest improvements over
the current configurations, with more gains at the lower levels of
AUC. When we add autotyping to our improved inference by re-
ducing the minimum number of presented sequences to 0, we get
additional gains across the board, even for the AUC=1.0 condition.
In this case, gains due to autotyping are greater for higher AUC
conditions than they are for lower AUC conditions.

Table 3: Sequences per Letter for various AUC values and inference algorithms. Values average 100 Monte Carlo simulations.
System Configuration AUC 1.00 AUC 0.90 AUC 0.83 AUC 0.80 AUC 0.75 AUC 0.71
Current Opt. 1.00 2.05 2.39 3.74 5.22 6.18
Current Best Configuration 1.00 1.84 2.17 3.51 4.89 6.03
Improved Inference 1.00 1.78 2.08 3.10 4.21 4.80
Improved Inference+Auto 0.67 1.48 1.78 2.82 3.93 4.56
Improvement Pct. over

Current Opt.: 33% 28% 26% 25% 25% 26%
Current Best Configuration: 33% 20% 18% 20% 20% 24%

A

A

A

A A

B

B

B

B
B

C

C

C

C
C

D

D

D

D
D

E

E

E

E
E

F

F

F

F
F

G

G

G

G
G

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

AUC 0.90 AUC 0.83 AUC 0.8 AUC 0.75 AUC 0.71

A: Current

B: Current Opt.

C: Current Opt+Auto

D: Current Opt+Back

E: Current Opt+Auto+Back

F: Improved Inference

G: Improved Inference+Auto

Figure 3: Letters typed per minute for various simulated AUC values.

Figure 3 presents all conditions reported in Tables 2 and 3, with the
sequences per letter converted to letters per minute, following the
conversion as presented in Section 3.3. In this graph, it is easy to
visualize the relatively higher impact of autotyping with improved
inference at the higher AUC levels versus the lower levels; and the
improvements due to just improved inference at those lower levels.

Table 4 shows the performance of the best current RSVP Key-
board configuration compared to our improved inference with au-
totype for AUC=0.90, when evaluated on the different test sets
mentioned in Section 3.3. Comparable results (indicating gener-
alization across different text genres) were found for other AUC
levels as well. Due to the number of simulations and the size of
the test sets, all reported differences are statistically significant at
p < 0.001.

Table 4: Comparison of sequences per letter across different
test corpora (AUC = 0.90).

Test Current Improved Pct.
Corpus Opt+Auto+Back Inference+Auto Improvement

GB 1.84 1.48 20%
AAC 2.01 1.69 16%
NYT 1.85 1.50 19%

4.3 The backspace tradeoff
We find that the optimal setting for the decision threshold with our
improved algorithm is at 0.5. Thus, if the probability is 0.5 or
higher, then it is more efficient to go ahead and type the symbol
than to spend the time to achieve higher certainty. One potential
problem with setting the decision threshold this low is that a higher
proportion of typing actions is a backspace than when the threshold
is set at, say, 0.9, as in the current RSVP Keyboard system. Table
5 shows the ratio of backspaces to all typed symbols in different
simulations. Our improved inference algorithm requires backspace
more than twice as often as the fastest method under the current
system, and over three times as often for the highest AUC level.

Because frequent backspaces may be confusing and frustrating,
users might choose to sacrifice some performance by reducing the
frequency of backspace. This tradeoff can be managed by varying
the decision threshold parameter: a higher threshold will be sub-
optimal from a typing speed standpoint, but will result in fewer
backspaces. The dynamics of this tradeoff are illustrated in Figure
4. The decision threshold values used for this figure were 0.5, 0.6,

Current Improved Improved
AUC Opt+Auto+Back Inference Inference+Auto
0.71 18.5 31.6 37.2
0.75 14.1 28.0 34.3
0.80 13.1 24.6 32.7
0.83 10.0 18.3 28.9
0.90 9.7 16.4 29.2

Table 5: Percentage of symbols typed that are backspace across
varying AUC values.

0.7, 0.8, 0.9, 0.95, 0.99 and 0.999. By choosing a particular operat-
ing point, it is possible to cut the backspace percentage in half and
only slightly decrease typing performance.

4.4 Autotyping and autodelete
One aspect of autotyping that we have not discussed much up to
now is that the backspace symbol can be autotyped just like other
symbols, which results in what we call autodeletion. In fact, com-
plex combinations of automatic typing and deleting can lead to
what we have termed “autorevision.” For example, Figure 5 presents
a sequence of autotype and autodelete events that were actually ob-
served in our simulated trials. Once the string “my care” was typed,
autotyping produced the rest of the word “carefully” with following
whitespace, before reaching a state where EEG observations were
required. The result of ERP detection was a backspace symbol,
leading to deletion of the whitespace. Once this deletion occurred,
autotyping of the backspace symbol (autodeleting) deleted the suf-
fix of “carefully” back to “care”, at which point autotyping pro-
duced a new full word candidate “caregivers.” This entire sequence
of actions required just a single round of ERP detection.

For AUC=0.90, we find that 41% of symbols are autotyped, and
that around 18% of autotyping events complete a word. For lower
AUC values, those percentages are lower, 31% autotyped and 13%
of autotyping events complete a word. Table 6 presents statistics
on the frequency of the various kinds of autotyping events for dif-
ferent AUC levels with our improved inference algorithm. We see
that forward autotyping is the most common, from 70-80% of the
autotyping events, versus 20-30% being autodeletions. More than
half of autotyping is a single symbol.

5. SUMMARY AND FUTURE WORK
We have shown that our improved inference algorithm results in
significant improvements in simulated typing speed. We have shown

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 5 10 15 20 25 30 35 40

Le
tte

rs
 p

er
 M

in
ut

e

Backspace Percentage

AUC 0.90

AUC 0.71

Figure 4: Backspace percentage versus typing speed for the im-
proved inference with autotype at two simulated AUC values.

that this gain is consistent across different text corpora, and that au-
totyping is both fast and well-suited to our method. We have intro-
duced the possibility of autodeletion and autorevision, interesting
varieties of autotyping that we believe to be novel to this research.
We have examined the tradeoffs involved with these higher typ-
ing speeds, specifically those involved with the frequency of typing
backspace versus typing speed.

For future work, it is clear that we must validate these algorithms
with real typing experiments, and with participants that fall on a
broad range of AUC levels. Autotyping, including autodeletion and
autorevision, will likely carry some additional processing burdon
on users that will impact the ultimate utility of these algorithms.
The system must be configured to clearly convey to the user when
the system autotypes, so that they can focus on a target letter that
is appropriate for the new context. In addition, we are currently
working to analyze the behavior when presented sequences are less
than the full set of symbols.

Acknowledgments
Thanks to the rest of the RSVP Keyboard team at OHSU and North-
eastern. This research was supported in part by NIH Grant
#1R01DC009834-01. Any opinions, findings, conclusions or rec-
ommendations expressed in this publication are those of the authors
and do not necessarily reflect the views of the NIH.

6. REFERENCES
[1] B. Carpenter. Scaling high-order character language models to

gigabytes. In Proceedings of the ACL Workshop on Software, pages
86–99, 2005.

[2] W. Crochetiere, R. Foulds, and R. Sterne. Computer aided motor
communication. In Proceedings of the 1974 Conference on

Table 6: Frequency of different types of autotyping: forward
only, backward only, and autorevision, under various AUC val-
ues. Algorithm is Improved Inference+Auto.

Type of autotyping event AUC 0.90 AUC 0.80 AUC 0.71
Forward only 77.3 73.0 68.0

Forward only (1 symbol) 40.7 39.1 39.0
Forward only (2+ symbols) 36.6 33.9 29.1

Backward only 19.6 25.2 30.7
Backward only (1 symbol) 10.7 14.2 18.1
Backward only (2+ symbols) 8.9 11.0 12.7

Forward and backward 3.2 1.8 1.3
(autorevision)

step typed via action
1 my_caref autotype
2 my_carefu |
3 my_careful |
4 my_carefull |
5 my_carefully |
6 my_carefully_ ↓
7 observe EEG
8 my_carefully delete
9 my_carefull autodelete
10 my_careful |
11 my_carefu |
12 my_caref |
13 my_care ↓
14 my_careg autotype
15 my_caregi |
16 my_caregiv |
17 my_caregive |
18 my_caregiver |
19 my_caregivers ↓

Figure 5: Example of autorevision

Engineering Devices in Rehabilitation, pages 1–8, 1974.
[3] R. Foulds, G. Baletsa, and W. Crochetiere. The effectiveness of

language redundancy in non-verbal communication. In Proceedings
of the Conference on Devices and Systems for the Disabled, pages
82–86, 1975.

[4] J. H. Friedman. Regularized discriminant analysis. Journal of the
American statistical association, 84(405):165–175, 1989.

[5] D. J. Higginbotham. Evaluation of keystroke savings across five
assistive communication technologies. Augmentative and Alternative
Communication, 8(4):258–272, 1992.

[6] J. Higginbotham, B. Moulton, G. Lesher, and B. Roark. The
application of natural language processing to augmentative and
alternative communication. Assistive Technology, 24(1):14–24, 2012.

[7] H. H. Koester and S. Levine. Effect of a word prediction feature on
user performance. Augmentative and Alternative Communication,
12(3):155–168, 1996.

[8] D. Krusienski, E. Sellers, D. McFarland, T. Vaughan, and J. Wolpaw.
Toward enhanced P300 speller performance. Journal of neuroscience
methods, 167(1):15–21, 2008.

[9] G. W. Lesher and G. J. Rinkus. Leveraging word prediction to
improve character prediction in a scanning configuration. In
Proceedings of the RESNA 2002 Annual Conference, Reno, 2002.

[10] U. Orhan, D. Erdogmus, B. Roark, B. Oken, S. Purwar, K. E. Hild II,
A. Fowler, and M. Fried-Oken. Improved accuracy using recursive
bayesian estimation based language model fusion in ERP-based BCI
typing systems. In 34th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBCÕ12), 2012.

[11] U. Orhan, K. E. Hild II, D. Erdogmus, B. Roark, B. Oken, and
M. Fried-Oken. RSVP keyboard: an EEG-based typing interface. In
Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), pages 645–648, 2012.

[12] B. Roark, R. Beckley, C. Gibbons, and M. Fried-Oken. Huffman
scanning: using language models within fixed-grid keyboard
emulation. Computer Speech and Language, in press.

[13] B. Roark, J. de Villiers, C. Gibbons, and M. Fried-Oken. Scanning
methods and language modeling for binary switch typing. In
Proceedings of the NAACL HLT 2010 Workshop on Speech and
Language Processing for Assistive Technologies, pages 28–36, 2010.

[14] M. Treder and B. Blankertz. (C)overt attention and visual speller
design in an ERP-based brain-computer interface. Behavioral and
Brain Functions, 6(1):28, 2010.

[15] K. Vertanen and P. O. Kristensson. The imagination of crowds:
Conversational aac language modeling using crowdsourcing and
large data sources. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 700–711.
ACL, 2011.

[16] I. H. Witten and T. C. Bell. The zero-frequency problem: Estimating
the probabilities of novel events in adaptive text compression.
Information Theory, IEEE Transactions on, 37(4):1085–1094, 1991.

