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Abstract

This paper investigates supervised and unsupervised adaptation of stochastic grammars, including n-
gram language models and probabilistic context-free grammars (PCFGs), to a new domain. It is shown that
the commonly used approaches of count merging and model interpolation are special cases of a more gen-
eral maximum a posteriori (MAP) framework, which additionally allows for alternate adaptation
approaches. This paper investigates the effectiveness of different adaptation strategies, and, in particular,
focuses on the need for supervision in the adaptation process. We show that n-gram models as well as
PCFGs benefit from either supervised or unsupervised MAP adaptation in various tasks. For n-gram mod-
els, we compare the benefit from supervised adaptation with that of unsupervised adaptation on a speech
recognition task with an adaptation sample of limited size (about 17 h), and show that unsupervised adap-
tation can obtain 51% of the 7.7% adaptation gain obtained by supervised adaptation. We also investigate
the benefit of using multiple word hypotheses (in the form of a word lattice) for unsupervised adaptation on
a speech recognition task for which there was a much larger adaptation sample available. The use of word
lattices for adaptation required the derivation of a generalization of the well-known Good-Turing estimate.
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Using this generalization, we derive a method that uses Monte Carlo sampling for building Katz backoff
models. The adaptation results show that, for adaptation samples of limited size (several tens of hours),
unsupervised adaptation on lattices gives a performance gain over using transcripts. The experimental
results also show that with a very large adaptation sample (1050 h), the benefit from transcript-based adap-
tation matches that of lattice-based adaptation. Finally, we show that PCFG domain adaptation using the
MAP framework provides similar gains in F-measure accuracy on a parsing task as was seen in ASR accu-
racy improvements with n-gram adaptation. Experimental results show that unsupervised adaptation pro-
vides 37% of the 10.35% gain obtained by supervised adaptation.
! 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Most current speech and language processing systems rely on statistical modeling, requiring
large quantities of annotated training data for parameter estimation of the system. The perfor-
mance of the system on test data depends in large part on how well the statistical characteristics
of the training material match that of the test data. Developing a system for a new domain, which
will have its own statistical characteristics, is costly, primarily due to the collection and prepara-
tion of the training data. In particular, manual annotation of training data is very labor intensive.

In an attempt to decrease the cost of developing systems for new domains, domain adaptation
has received a fair amount of attention. Such approaches try to leverage out-of-domain models or
data (models or data mismatched to the domain of interest) to decrease the in-domain annotation
requirements. This requires an algorithm to derive an adapted model from out-of-domain data or
from an out-of-domain model, when given a sample of in-domain data, which is possibly small
and might or might not be annotated.

In acoustic modeling for automatic speech recognition (ASR), adaptation based on a small data
sample has received a large amount of attention. For large vocabulary systems, an effective acous-
tic model will have millions of free parameters; observations for only a small subset of the param-
eters will be available in the adaptation sample. Hence direct re-estimation will be plagued by data
sparsity and possibly futile, since only a small fraction of the model will be affected. One class of
algorithms addresses that problem by use of affine transformations applied to all distributions in
the model (Legetter and Woodland, 1995; Gales, 1998). A second class of algorithms approaches
acoustic model adaptation by estimating those distributions for which there were observations in
the adaptation sample, and handles data sparsity by smoothing the estimate based on the adap-
tation sample with the previous model estimate. Most notable in this class of algorithms is the
maximum a posteriori (MAP) adaptation algorithm (Gauvain and Lee, 1994) which considers
the model parameter estimates themselves a random variable with a given prior distribution.
The adapted parameter estimates are found as the mode of the posterior distribution obtained
from the prior and unadapted model distributions. Since this technique only adapts those distri-
butions that were seen in the adaptation sample, it does not perform as well as transform-based
approaches when the adaptation sample is very small (e.g. less than 60 s of speech) but will out-
perform the transform-based techniques with larger adaptation samples, as it is less constrained.

In contrast to adaptation of acoustic models for ASR, adaptation of stochastic grammars, such
as n-gram models used for language modeling or probabilistic context-free grammars (PCFGs) for
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statistical parsing, has received much less attention. The most widespread approaches to n-gram
adaptation in a large vocabulary setting are model interpolation (e.g. Woodland et al., 1998) and
count mixing (e.g. Ljolje et al., 2000). The domain adaptation of statistical parsing models de-
scribed in Gildea (2001) is essentially the same as the count mixing approach commonly use in
n-gram adaptation.

Another area of focus to reduce the development effort of building a system for a new domain is
the use of unsupervised or lightly supervised learning. There it is assumed that the effort of col-
lecting data from a domain of interest falls short of full manual annotation. Out-of-domain infor-
mation is leveraged either by automatic annotation using an out-of-domain trained system, or by
using an automatic selection algorithm (active learning) to sample the in-domain data and then
manually annotate that (hopefully most informative) subset. In lightly supervised training it is as-
sumed that some annotation is available for the in-domain sample, but that this annotation is
noisy.

In the field of acoustic modeling for ASR, Lamel et al. (2002) showed that it is possible to ob-
tain accurate acoustic models in a lightly supervised setup, using as little as 10 min of supervised
training data. The manually annotated sample is used to bootstrap the acoustic model of the sys-
tem and a language model is trained on the noisy transcripts. That system is then used to auto-
matically transcribe the in-domain data and those annotations are used to re-estimate the model.

Unsupervised n-gram adaptation for ASR has also been investigated recently in Gretter and
Riccardi (2001), Stolcke (2001). Stolcke (2001) used the unweighted transcripts to build language
models; Gretter and Riccardi (2001) filtered or weighted based on confidence measures. The con-
fidence annotation in that work was obtained from consensus hypothesis decoding (Mangu et al.,
1999).

For statistical parsing models, Hwa (2001) demonstrated how active learning techniques can
reduce the amount of annotated data required to converge on the best performance, by selecting
from among the candidate strings to be annotated in ways which promote more informative
examples for earlier annotation. Hwa (1999) used a variant of the inside–outside algorithm pre-
sented in Pereira and Schabes (1992) to exploit a partially labeled out-of-domain treebank, and
found an advantage to adaptation over direct grammar induction. The work reported in
Steedman et al. (2003a) and Steedman et al. (2003b) involved leveraging multiple parsers in a
co-training approach, which yielded good results for cross-domain adaptation.

Another direction of generalization that arises when studying n-gram adaptation based on
unsupervised annotated data is that recognizers can produce multiple hypotheses in the form
of weighted word lattices. These lattices provide a probability distribution over a number of com-
peting hypothesis transcriptions, and hence contain more information that could potentially be
exploited for adaptation.

The focus of this paper is on adaptation of stochastic grammars, in particular n-gram models
and PCFGs. Using the derivation of the MAP algorithm developed for acoustic model adapta-
tion in ASR, we show in Section 2 that most adaptation approaches previously used for
n-grams and PCFGs are special cases of the more general MAP framework. In Section 3, we
compare n-gram adaptation with and without supervision. Particular attention is paid to using
unsupervised adaptation with multiple hypotheses, i.e. using lattices rather than transcripts. In
Section 4, we compare the use of supervised and unsupervised adaptation for a PCFG-based
statistical parser.
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2. Maximum a posteriori-based adaptation

In the MAP estimation framework described in detail in Gauvain and Lee (1994), the model
parameters h are assumed to be a random vector in the space H. Given an observation
sample x, the MAP estimate is obtained as the mode of the posterior distribution of h denoted
as g(. jx)

hMAP ¼ argmax
h

gðhjxÞ ¼ argmax
h

f ðxjhÞgðhÞ: ð1Þ

Although the derivation in Gauvain and Lee (1994) was aimed at estimation of Gaussian mixture
distributions, it generalizes directly for use in n-gram and PCFG adaptation. In an n-gram lan-
guage model, model states represent word-histories and a multinomial distribution is defined
for the possible words following that history. In a PCFG, a state represents a set of production
rules with a multinomial distribution across those rules. This is entirely analogous to the distribu-
tion across mixture components within a mixture density. Instead of estimating mixture weights,
here the task is to estimate word or rule probabilities. Following the motivation and derivation in
Gauvain and Lee (1994), a practical candidate for the prior distribution of the weights
x1,x2, . . .,xK is the Dirichlet density,

gðx1;x2; . . . ;xK jm1; m2; . . . ; mKÞ /
YK

i¼1

xmi$1
i ; ð2Þ

where mi > 0 are the parameters of the Dirichlet distribution. If the expected counts for state s are
denoted as Cs and for the ith component as cs,i, the mode of the posterior distribution is obtained
as

x̂s;i ¼
ðms;i $ 1Þ þ cs;iPK
k¼1ðms;k $ 1Þ þ Cs

; 1 6 i 6 K: ð3Þ

Note that there are as many free parameters in the prior distribution as there are in the model,
hence this in itself makes the approach not practical for adaptation purposes where one wants
to control the number of free parameters for the sake of robustness with sparse data. Generally,
a tying or parameterization of the prior distributions is used to limit the number of free param-
eters in the prior distribution. The frequently used model interpolation and count merging ap-
proaches correspond to two choices of parameterizations of the prior distributions in this
general MAP framework.

We will define the expected counts cws;i from a sample w of size |w|, for use in Eq. (3), as follows.
Let Pw(s,xi) be the joint probability of s and the ith component, estimated from the sample w in a
manner which may reserve probability mass for unobserved events. Then
cws;i ¼ jwjPwðs;xiÞ and Cw

s ¼
P

ic
w
s;i. We will denote the raw count as ĉws;i.

Let expected counts and probability estimates from the out-of-domain data or model be de-
noted with superscript !O" and their in-domain counterparts with superscript !I". Then a count
merging approach with mixing parameters a and b is obtained by choosing the parameters of
the prior distribution as

ms;i ¼ CO
s
a
b
POðxijsÞ þ 1 ð4Þ
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since in that case

bP mrgðxijsÞ ¼
CO

s
a
b P

OðxijsÞ þ cIs;i
PK

k¼1 CO
s

a
b P

OðxkjsÞ
h i

þ CI
s

¼
acOs;i þ bcIs;i
aCO

s þ bCI
s

: ð5Þ

On the other hand, if the parameters of the prior distribution are chosen as

ms;i ¼ CI
s

k
1$ k

POðxijsÞ þ 1 ð6Þ

the MAP estimate reduces to a model interpolation approach with parameter k, since in that case

bP intpðxijsÞ ¼
CI

s
k

1$k P
OðxijsÞ þ cIs;iPK

k¼1 CI
s

k
1$k P

OðxkjsÞ
! "

þ CI
s

¼
k

1$k P
OðxijsÞ þ P IðxijsÞ

k
1$k þ 1

¼ kPOðxijsÞ þ ð1$ kÞP IðxijsÞ: ð7Þ

The MAP framework unifies these two approaches as particular choices for the parameterization
of the prior distribution. 1 It also opens the possibility for other adaptation approaches by chang-
ing the prior parameterization.

3. MAP adaptation of n-gram models

In this section, the MAP adaptation framework is applied to n-gram models. The MAP formu-
lation directly applies to this type of model, with the states s in Eq. (3) corresponding to word
histories (consisting of zero or more previous words) and the weights xs,i corresponding to the
probability estimates for words wi emitted from the state. The objective is to use the adapted mod-
els for ASR and hence the performance of the adapted models is evaluated based on the transcrip-
tion accuracy of the resulting system.

All of the n-gram models are smoothed using Katz backoff (Katz, 1987). The smoothing of the
adapted n-gram models falls out of the use of expected counts in Eq. (3), and smoothed proba-
bility estimates in Eqs. (4) and (6). That is, the MAP estimation provides probability mass to
unobserved events because PO and PI do. The model is then defined as

P ðxijsÞ ¼
bP ðxijsÞ if ĉIs;i þ ĉOs;i > 0;

a P ðxijs0Þ otherwise;

(

ð8Þ

where a is the backoff weight and s 0 the backoff history for history s.
First, in Section 3.1 we investigate the effects of the parameterization of the prior distribution

and compare the effectiveness of unsupervised adaptation with supervised adaptation. In addition
we consider hybrid approaches, using supervised adaptation for a subset of the in-domain sample
and unsupervised adaptation for the rest. In the unsupervised adaptation experiments, we limit

1 Some may note that, because the in-domain counts are used in the definition of the parameters of the prior
distribution, this does not strictly speaking constitute a ‘‘prior’’ in the Bayesian sense. We will, however, continue to
refer to it as the prior distribution.
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our scope to the use of single transcripts rather than lattices representing multiple hypotheses. In
addition, the unsupervised experiments are limited by the fairly small amount of available adap-
tation data (17 h).

In Section 3.2, we expand our scope to using unsupervised adaptation based on either tran-
scripts or lattices. We experiment in a different domain where we have a much larger adaptation
sample available (over 1000 h), allowing us to compare the benefit from using the lattice represen-
tation over using transcripts for different sizes of the adaptation sample. An important difference
for unsupervised adaptation between single transcripts and probability weighted multiple tran-
scripts obtained from a lattice is the fact that the resulting counts are integers in one case and frac-
tional counts in the other. Fractional counts violate an assumption made in the commonly used
Good-Turing estimation. As a result, Section 3.2 describes in detail the generalization of Good-
Turing estimation used to estimate the smoothing parameters.

3.1. Adaptation based on transcripts

To evaluate the effectiveness of the transcript-based adaptation, we measured the transcrip-
tion accuracy of an adapted voicemail transcription system on voicemail messages received at
a customer care line of a telecommunications network center. The initial voicemail system,
named Scanmail, was trained on general voicemail messages collected from the mailboxes of
people at our research site in Florham Park, NJ. The target domain is also composed of voice-
mail messages, but for a mailbox that receives messages from customer care agents regarding
network outages. In contrast to the general voicemail messages from the training corpus of
the Scanmail system, the messages from the target domain, named SSNIFR, are focused solely
on network related problems. They contain frequent mention of various network related acro-
nyms and trouble ticket numbers, rarely (if at all) found in the training corpus of the Scanmail
system.

The transcription system used in these experiments is described in Section 3.1.1. The experimen-
tal results obtained using various adaptation approaches are described in Section 3.1.2 and
discussed in Section 3.1.3.

3.1.1. System description
To evaluate the transcription accuracy, we used a multi-pass speech recognition system that em-

ploys various unsupervised speaker and channel normalization techniques. An initial search pass
produces word-lattice output that is used as the grammar in subsequent search passes. The system
is almost identical to the one described in detail in Bacchiani (2001). The main differences in terms
of the acoustic model of the system are the use of linear discriminant analysis features; use of a
100-hour training set as opposed to a 60-hour training set; and the modeling of the speaker gender
which in this system is identical to that described in Woodland and Hain (1998). Note that the
acoustic model is appropriate for either domain as the messages are collected on a voicemail sys-
tem of the same type. This parallels the experiments in Lamel et al. (2002), where the focus was on
AM adaptation in the case where the LM was deemed appropriate.

The language model of the Scanmail system is a Katz backoff trigram, trained on hand-tran-
scribed messages of approximately 100 h of voicemail (1 million words). The model contains
13,460 unigram, 175,777 bigram, and 495,629 trigram probabilities. The lexicon of the Scanmail
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system contains 13,460 words and was compiled from all the unique words found in the 100 h of
transcripts of the Scanmail training set.

3.1.2. Experimental results
For every experiment, we report the accuracy of the one-best transcripts obtained at four stages

of the recognition process, after the first pass lattice construction (denoted as FP), after vocal tract
length normalization and gender modeling (denoted as VTLN), after Constrained Model-space
Adaptation (denoted as CMA) and after Maximum Likelihood Linear regression adaptation (de-
noted as MLLR).

For the SSNIFR domain we have available a 1 hour manually transcribed test set (10,819
words) and approximately 17 hours of manually transcribed adaptation data (163,343 words).
In all experiments, the vocabulary of the system is left unchanged. Generally, for a domain shift
this can raise the error rate significantly due to an increase in the OOV rate. However, this in-
crease in the experiments here is limited because the majority of the new domain-dependent
vocabulary are acronyms which are covered by the Scanmail vocabulary through individual let-
ters. The OOV rate of the SSNIFR test set, using the Scanmail vocabulary is 2%.

Table 1 lists the results obtained using 3.7 h (38,586 words) of manually transcribed SSNIFR
domain data. The baseline result is the performance of the Scanmail system on the 1-hour
SSNIFR test set without any adaptation. The in-domain result was obtained using a trigram lan-
guage model trained on the 3.7 h of in-domain data alone. The other rows give the performance of
systems using the Scanmail language model, adapted with either count merging (Eq. (5)) or inter-
polation (Eq. (7)). It can be seen that both adaptation approaches improve performance over the
baseline (28.0%) and also improve over the in-domain trained model (26.2%). There is a larger
improvement for the count merge adaptation than for the interpolation adaptation (5.8% vs.
5.4%). The count merging parameters (a = 1 and b = 5) and interpolation parameter (k = 0.75)
were obtained empirically. Given these results, all subsequent experiments used a count merging
approach with the same merging parameters.

Table 2 shows the results from supervised adaptation of the Scanmail language model using
different sized subsets of the 17 h of SSNIFR adaptation material. In these experiments, LM
adaptation counts are obtained from the manual transcripts rather than from ASR transcripts.
Note that training directly on the 17 h of SSNIFR adaptation data, without using the out-
of-domain data, yields an MLLR-stage word-error rate of 22.8, which is 2.5% worse than using
both the in-domain and out-of-domain data.

Table 1
Recognition performance using 3.7 h of in-domain data for either training or adaptation using count merging or
interpolation

System FP VTLN CMA MLLR

Baseline 32.7 30.0 28.3 28.0
In-domain 29.4 27.3 26.5 26.2
Count merging 26.3 23.4 22.6 22.2
Interpolation 26.6 23.7 23.0 22.6

The merging parameters were a = 1 and b = 5, the interpolation parameter was k = 0.75.
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Table 3 repeats this experiment but in an unsupervised setting. Each subset of the adaptation
data was first transcribed using an ASR system with the Scanmail language model. These tran-
scripts were then used to obtain counts, and the Scanmail language model was adapted using
those counts. Although most of the improvement in accuracy comes from adapting on just
25% of the available 17 h, improvements in both FP and MLLR accuracy were had by increasing
the size of the adaptation sample.

Both supervised and unsupervised LM adaptation give performance improvements over the
baseline using no adaptation. On a quarter of the 17-hour adaptation set, the unsupervised
LM adaptation gives a 2.5% drop in the word error rate, compared to a 6.0% reduction using
supervised LM adaptation. Increasing the amount of data used for LM adaptation to the full
17 h gives an additional 1.7% and 0.9% improvement for the supervised and unsupervised cases,
respectively.

To investigate the effect of iterative LM adaptation, we used the system obtained by unsuper-
vised LM adaptation on all of the 17-hour adaptation set to re-transcribe the entire adaptation
set. We then used the counts from the MLLR-pass transcripts, together with the counts from
the Scanmail language model, to obtain an adapted model. The results of adapted systems at mul-
tiple iterations are shown in Table 4. A second iteration provided an additional 0.5% accuracy
improvement. A third iteration gave no improvement in accuracy.

To see to what extent the improvements of iterative LM adaptation are dependent on the start-
ing point, we transcribed the adaptation set using the system obtained by supervised LM adapta-
tion on 25% of the adaptation set. We then constructed adapted language models using the
Scanmail model counts, the 25% supervised counts, and the counts obtained from the MLLR
transcripts for the remaining subsets of the adaptation set. Both the supervised and unsupervised
counts from the adaptation set were weighted with the same mixing parameters a = 1 and b = 5.

Table 2
Recognition on the 1-hour SSNIFR test set using systems obtained by supervised LM adaptation on various sized
subsets of the 17-hour adaptation set

Fraction of the adaptation set (%) FP VTLN CMA MLLR

0 32.7 30.0 28.3 28.0
25 25.6 23.2 22.3 22.0
50 24.8 21.8 21.3 21.1
75 23.8 21.6 20.8 20.4
100 23.7 21.1 20.5 20.3

Table 3
Recognition on the 1-hour SSNIFR test set using systems obtained by unsupervised LM adaptation on various sized
subsets of the 17-hour adaptation set

Fraction of the adaptation set (%) FP VTLN CMA MLLR

0 32.7 30.0 28.3 28.0
25 28.9 27.0 25.8 25.5
50 28.4 26.0 25.2 24.8
75 28.1 25.6 24.9 24.7
100 28.2 25.6 24.9 24.6
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The possibility of using different parameters for the supervised and unsupervised counts was not
investigated to allow a more direct comparison of the results of this mixed approach with that of
the supervised-only results. However, given the difference in reliability of the supervised and unsu-
pervised transcripts, it is possible that using multiple parameters can result in improved accuracy.
The results of the system adapted on the mixed supervised and unsupervised counts are shown in
Table 5. A comparison of these results with the performance of the system obtained just with
supervised LM adaptation (Table 2) demonstrates that using MLLR transcript-based counts in
addition to to the supervised counts provides an additional accuracy improvement (21.3% vs.
22.0%) over using the supervised counts alone.

An alternative to an adaptation approach is to use the unsupervised counts obtained from ASR
transcripts for model training directly. Table 6 shows the result using language models built from
the MLLR transcripts of the adaptation set obtained by the baseline system. Using half of the
adaptation set in this manner gave a 2% improvement in first-pass accuracy over the baseline;
but this improvement is not additive, yielding just 0.4% improvement after all of the AM adap-
tation. The results do improve with more adaptation data: 2.9% FP accuracy improvement and
1.7% MLLR accuracy improvement.

Table 4
Recognition results of systems obtained by iterations of unsupervised LM adaptation using the entire 17-hour
adaptation set

Iterations of adaptation FP VTLN CMA MLLR

0 32.7 30.0 28.3 28.0
1 28.2 25.6 24.9 24.6
2 27.9 25.1 24.4 24.1
3 28.0 25.3 24.7 24.3

The adaptation counts were obtained from transcription with an adapted system.

Table 5
Recognition results of systems obtained by a second iteration of unsupervised LM adaptation using various sized
subsets of the 17-hour adaptation set

Fraction of the adaptation set (%) FP VTLN CMA MLLR

50 25.4 22.2 21.7 21.5
100 25.0 22.1 21.5 21.3

The 50% row consists of 25% supervised, 25% unsupervised; the 100% row consists of 25% supervised, 75% unsu-
pervised. The automatic transcription for the unsupervised adaptation was done with a 25% supervised adapted system,
hence the baseline is the 25% row of Table 2.

Table 6
Recognition results of systems obtained by training language models solely from the transcripts produced by the
baseline system on various subsets of the adaptation set

Fraction of the adaptation set (%) FP VTLN CMA MLLR

50 30.7 28.4 27.7 27.6
100 29.8 27.0 26.4 26.3
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A final LM adaptation scenario that was investigated on this data set is based on self-adapta-
tion. In this scenario, the adaptation counts are obtained from the MLLR transcripts produced
by the final search pass on the 1-hour test set. The test set is then re-transcribed using a language
model obtained by adaptation using the Scanmail counts and the adaptation counts from the test
set. Table 7 shows the results from two such experiments. The experiments differed in the lan-
guage model used for self-adaptation. In each experiment, the LM to be adapted was used to
transcribe the test set. This LM was then adapted with the counts from the ASR transcript of
the test set. One experiment used the baseline Scanmail language model; the other used the lan-
guage model obtained by two iterations of unsupervised adaptation on the 17-hour adaptation set
(see Table 4). In both experiments, there is a large gain in the first-pass (FP) accuracy: 5.4% for
the Scanmail trial (27.3% vs. 32.7%); 2.4% for the unsupervised adapted trial (25.5% vs. 27.9%).
These gains, however, are not additive with the AM adaptation gains and reduce at the final
search pass to 1.3% for the Scanmail trial (26.7% vs. 28.0%) and 0.1% for the unsupervised
adapted trial (24.0% vs. 24.1%). This shows that the self-adaptation incorporates a part of the
unsupervised AM adaptation gain. Self-adaptation does provide a gain in accuracy, but depen-
dent on the starting point, since transcription accuracy improved for the baseline trial but not
for the unsupervised adapted trial. The 1.3% improvement using self-adaptation alone on the
baseline model is less than the 3.4% obtained by a single iteration of unsupervised adaptation
on the 17-hour adaptation set.

3.1.3. Conclusions
The experimental results show various approaches to supervised and unsupervised language

model adaptation based on counts from manually annotated transcripts or ASR transcripts.
All experiments showed improved transcription performance compared to unadapted baseline
system. Starting from a 28% word-error baseline, using 17 h of in-domain adaptation data, super-
vised adaptation gives a 7.7% gain (20.3% vs. 28.0%); unsupervised LM adaptation achieves 51%
of that gain (24.1% vs. 28.0%). A quarter of the 17-hour adaptation set, in a unsupervised setting,
provides a 2.5% gain over the baseline (25.5% vs. 28.0%).

Iterative LM adaptation also improves accuracy, raising the accuracy gain from 3.4% to 3.9%
with one additional iteration of the unsupervised adaptation approach. When starting with a
model obtained by supervised adaptation on 25% of the adaptation set, iterative unsupervised
adaptation still provides an additional improvement, raising the 6.0% gain from supervised adap-
tation by 0.7%.

Comparing the iterative unsupervised adaptation approach to a training approach, it shows
that for a 17-hour adaptation sample, the gain from adaptation is 2.2% larger than that of train-
ing (3.9% vs. 1.7%).

Table 7
Recognition results of systems obtained by self-adaptation on the test set

Initial model FP VTLN CMA MLLR

Scanmail 27.3 27.0 26.6 26.7
SSNIFR 17 h unsup 25.5 24.5 24.1 24.0

Adaptation counts were obtained from the MLLR-pass test set transcripts produced by a system using the Scanmail or
second iteration unsupervised adapted (see Table 4) language models.
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Furthermore, self-adaptation on the 1-hour test set provides gains over the baseline system of
1.3%. This gain is, however, dependent on the starting point, since self-adaptation applied on top
of an adapted model did not provide any additional gains. All self-adaptation experiments show a
large improvement in the first-pass accuracy, however, this gain is not additive with the gains ob-
tained from the AM normalization and self-adaptation algorithms. The LM adaptation process
obtains part of the AM adaptation benefits by adapting on the transcripts that already have mer-
ited from AM adaptation. All other adaptation scenarios, however, were additive with AM nor-
malization and self-adaptation. As a result, for subsequent trials, we simply report first pass
results.

3.2. Adaptation based on lattices

In this section, the focus is on adaptation from word-lattices as opposed to using ASR tran-
scripts. Lattices provide a probability distribution over a number of competing hypothesis tran-
scriptions and hence contain more information than ASR transcripts. Adapting on ASR
transcripts has led to effective model adaptation, but the question remains whether it is possible
to get further improvements by taking into account the distribution over transcriptions provided
by the word lattice.

Perhaps the first idea one might have for how to use lattices in n-gram modeling would be to use
the probability distribution on the lattices to define expected n-gram counts. Note, in general, this
leads to fractional n-gram counts. Some smoothing techniques, such as deleted interpolation (Je-
linek and Mercer, 1980) and Witten–Bell smoothing (Witten and Bell, 1991) could straightfor-
wardly use these counts, since these techniques rely on mixing maximum likelihood (relative
frequency) estimates. However, other techniques, such as Katz backoff (Katz, 1987) or Kneser–
Ney estimation (Kneser and Ney, 1995), which are very widely used, rely on integral counts in
their definition; exactly how to generalize them is not immediately clear. For this reason, we take
the time here to outline a general approach to extending arbitrary smoothing techniques to lattice
corpora. Using Good-Turing smoothing, we then employ a Monte Carlo version of our general-
ization for Katz backoff modeling and compare to the now standard technique of using one-best
transcription.

After presenting our generalization for use with word lattices in Section 3.2.1, we provide
empirical results for adaptation to a novel customer call classification application in Section
3.2.2. The baseline ASR results in this domain are below 50% word accuracy, which would lead
to the expectation that the word lattice would provide better adaptation to the new domain
than the error-filled ASR transcript. We show that, although the bulk of the accuracy gain
through adaptation is also achieved using just ASR one-best transcripts, there is a consistent
benefit to sampling from word lattices, enough to make this an interesting area of future re-
search. In particular, the word lattice sampling approach converges more quickly, leading to
more than a half percentage point improvement over the one-best method with 50 h of unla-
beled data. The one-best approach ultimately reaches the same level of performance, with more
unlabeled examples, both in terms of word accuracy and perplexity. Based on the results that
we present here, one can conclude that using the one-best transcripts is generally an effective
approximation to using the word lattices.

M. Bacchiani et al. / Computer Speech and Language 20 (2006) 41–68 51



3.2.1. Word probability estimation
In this section, we develop how to estimate word probabilities when drawn from a hidden sam-

ple, which we will apply to language model estimation from ASR word lattices. We first begin
with the standard, known sample case.

3.2.1.1. Known random sample. Let w = w1w2. . .wN be a random sample of size N from a finite set
W of words having probability distribution P(w). We assume that the distribution P(w) is un-
known to us and we wish to estimate it. The maximum likelihood estimate is

bP mlðwjwÞ ¼
r
N
; ð9Þ

where r = c(w,w) is the number of occurrences of w in the sample w. However, it is relatively poor
for low count words in the sample (Good, 1953).

Good"s estimate, which improves the estimate for low counts, is

bP gðwjwÞ ¼
r þ 1

N þ 1

ENþ1½nrþ1'
EN ½nr'

; ð10Þ

where nr is the number of distinct words that have count r in a sample (Good, 1953) and EN de-
notes the expectation over a sample of size N. Good shows that his estimate for the probability of
a word w is equal to E½Pujcðu;wÞ ¼ cðw;wÞ', the expected value of the probability of a word u se-
lected equiprobably from among those words with the same count as w in the sample.

The population quantity, EN ½nr', in Good"s estimate is unlikely to be known. In that case, it
must be approximated. Turing"s estimate

bP tðwjwÞ ¼
r þ 1

N
nrþ1

nr
ð11Þ

approximates EN ½nr' with nr from the sample (Good, 1953).
Katz shows how to apply the Good-Turing estimate not just to words but to n-grams of words

for building a stochastic LM (Katz, 1987).

3.2.1.2. Hidden random sample. Consider now that the sample is also unknown to us. Instead we
are only given L ¼ ðH; P ðwjLÞÞ, where H ( WN is the set of sample hypotheses and
PðwjLÞ > 0 is the probability that w 2 H was indeed the sample. When w 2 WN $H, we define
PðwjLÞ ¼ 0. This models situations where we have imperfect knowledge about a sample. In ASR,
for example, L might be the set of hypotheses and the corresponding (recognizer estimate of the)
probabilities of their being correct for a passage of N words of speech. 2

We wish to estimate P(w) from L. Define

eP ðwjLÞ ¼
X

w2H

bP ðwjwÞ P ðwjLÞ; ð12Þ

2 The assumption that each hypothesis has fixed length N simplifies the analysis in this section. A plausible
hypothesis from a recognizer of a long passage would be close but not always identical in length to what was, in fact,
uttered.
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where bP is whatever estimator we have chosen to use when the sample is known. In other words,
eP is the expected value of bP given our sample hypotheses and their probabilities.
We choose eP as our estimator of P(w) from L since we believe Eq. (12) makes it a natural can-

didate and because this estimator has several desirable properties that we list in the next section.
Before this, we need to consider eP under some restrictions on bP .

Suppose that bP ðwjwÞ only depends on the count r of w in w, i.e. r = c(w,w). This is true for the
maximum likelihood and Good"s estimate. Then

eP ðwjLÞ ¼
X

w2H

bP ðwjrÞPðwjLÞ ¼
XN

r¼0

bP ðwjrÞPðrjw;LÞ ð13Þ

thus, in these cases we can determine eP from Pðrjw;LÞ.
For the maximum likelihood estimator, Eq. (13) further simplifies to

eP ðwjLÞ ¼ 1

N

XN

r¼0

rPðrjw;LÞ ¼ E½rjw;L'
N

)
!r
N
: ð14Þ

For Good"s estimate, we need an estimate of EN ½nr' to use Eq. (13). We can use

EN ½nr' ¼
X

w2W
PNðrjwÞ *

X

w2W
Pðrjw;LÞ: ð15Þ

3.2.1.3. Properties of eP . Our estimator eP defined in Eq. (12) has the following properties:

(1) eP reduces to bP when |H| = 1:
If H ¼ fw0g then eP ðwjLÞ ¼ bP ðwjw0Þ. In the ASR example, this would correspond to perfect

recognition of w0 and the two estimates coincide.
(2) Bias(eP)=Bias(bP):

E½eP ðwÞ' ¼
X

L

eP ðwjLÞ PðLÞ ¼
X

L

X

w2H

bP ðwjwÞ P ðwjLÞPðLÞ

¼
X

w2WN

bP ðwjwÞ
X

L

P ðwjLÞPðLÞ ¼
X

w2WN

bP ðwjwÞ PðwÞ ¼ E½bP ðwÞ' ð16Þ

so eP has the same bias as bP and, in particular, is unbiased if bP is.
(3) Consistency of eP:
Let w0 be the hidden sample of size N. If PNðr0jw;LÞ converges in probability to 1 as N !1,

where r0 = c(w,w0), and if bP ðwjrÞ is weakly consistent, then eP ðwjLÞ is weakly consistent. This fol-
lows since if jbP ðwjr0Þ $ PðwÞj < ! and 1$ PNðr0jw;LÞ < !, then

jeP ðwjLÞ $ P ðwÞj ¼
XN

r¼0

bP ðwjrÞ PN ðrjw;LÞ $ PðwÞ

#####

#####

6 jbP ðwjr0Þ PN ðr0jw;LÞ $ PðwÞjþ
XN

r¼0

r 6¼r0

bP ðwjrÞ PN ðrjw;LÞ

6 jbP ðwjr0Þ PN ðr0jw;LÞ $ P ðwÞjþ 1$ PN ðr0jw;LÞ 6 3!: ð17Þ
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(4) Expected value of the probability of same count words:
Consider the expected value of the probability of a word u, selected equiprobably from among

those words with the same count as w in a sample w. When the sample is known, this equals
Good"s estimate, bP g. When w is hidden, it is

E½Pujcðu;wÞ ¼ cðw;wÞ' ¼
X

w2H
E½Pujcðu;wÞ ¼ cðw;wÞ;w'PðwjLÞ

¼
XN

r¼0

E½Pujr'Pðrjw;LÞ ¼
XN

r¼0

bP gðwjrÞ P ðrjw;LÞ ð18Þ

and we see from Eq. (13) that Eq. (18) equals eP when bP is Good"s estimate. Thus our generaliza-
tion of Good"s estimate when the sample is hidden equals the expected value of the probability of
a word selected equiprobably from among those with the same count as w just as when the sample
is known.

3.2.1.4. Computing eP . We can compute the eP in Eq. (12) approximately by using Monte Carlo
methods. For this, we first generate M random samples, w1; . . . ;wM 2 H, from PðwjLÞ and
approximate

eP ðwjLÞ * 1

M

XM

i¼1

bP ðwjwiÞ: ð19Þ

For more direct methods, we need to restrict bP . Let us require that it depends only on the count
r as in Eq. (13). In order to use Eq. (13), we need to evaluate

Pðrjw;LÞ ¼
X

w2H;
cðw;wÞ¼r

P ðwjLÞ:
ð20Þ

This, in principle, can be computed by enumerating all word sequences in H and explicitly
forming the sum in the equation. However, this may not be practical when jHj is large. In
that case, we may be able to divide and conquer. For suppose L can be divided into two
independent parts L1 and L2 where for i 2 {1,2}, Li ¼ ðHi; Pðwi;LiÞÞ, Hi ( WNi ,
N1 + N2 = N, H ¼ H1H2, and P ðw1w2jLÞ ¼ Pðw1jL2Þ Pðw2jL2Þ for all w1 2 H1 and
w2 2 H2, then

P ðrjw;LÞ ¼
Xr

k¼0

Pðr $ kjw;L1ÞPðkjw;L2Þ: ð21Þ

More generally, if L can be divided into M mutually independent parts, then Eq. (21) can be iter-
atively applied M $ 1 times to determine P ðrjw;LÞ. In the speech recognition example, H might
correspond to a long passage while each Hi could be hypotheses for the ith sentence in the pas-
sage where we assume sentences are independent of each other.

While this decomposition simplifies the problem of how to directly compute eP from word lat-
tices, we leave the non-trivial issues for accomplishing this on the component lattices to future
work and instead use the Monte Carlo approach here for our experiments.
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3.2.2. Unsupervised MAP adaptation using lattices
In contrast to the unsupervised adaptation approach used in Section 3.1, where the in-domain

counts (cIs;i and CI
s in Eq. (3)) were obtained from the transcripts, here the Monte Carlo approach

of Eq. 19 is used and the in-domain counts are found as

cIs;i ¼
1

M

XM

n¼1

jwnjPw
n ðs;wiÞ ð22Þ

and, as before,

CI
s ¼

X

i

cIs;i: ð23Þ

Motivated by the experimental results in Section 3.1, we initially decided to use a count merging
approach for adaptation. In other words, we intended to use the prior parameterization as in Eq.
(5). However, we found an important distinction between supervised or small sample unsuper-
vised MAP adaptation with unsupervised MAP adaptation on a large sample. The intuition be-
hind MAP adaptation in the supervised case is: with few in-domain observations, the model
should be close to the out-of-domain trained model; as more in-domain observations are ob-
tained, the model should move toward the maximum likelihood model given the observations.
In other words, as the in-domain counts grow, they should swamp the out-of-domain counts.
However, for unsupervised adaptation, the out-of-domain model being based upon supervised
annotations, constrains the noisy in-domain observations, and hence provides a benefit even when
the amount of unlabeled data is very large. For this reason, we modified the parameterization of
these MAP experiments to take this effect into account. Instead of using the prior distribution
parameters as in Eq. (4), we here use

ms;i ¼
a
b

PM
n¼1jwnj
M jw0j

CO
s P

OðxijsÞ þ 1 ð24Þ

so that larger unlabeled sample sizes result in greater compensatory scaling of the out-of-domain
observations, to avoid them being swamped. For the empirical results reported in the next section,
a
b ¼ 3:5. This resulted in good performance for both word-lattice sampling and one-best adapta-
tion approaches.

3.2.3. Experimental results
We evaluated both Monte Carlo word lattice sampling and one-best ASR transcription adap-

tation scenarios by measuring word accuracy within an AT&T ‘‘How May I Help You?’’ spoken
dialog application known as Customer Care (CC) (Gorin et al., 2002). The out-of-domain corpus
was 171,343 words transcribed from a previously deployed application known as Operator Ser-
vices (OS) (Gorin et al., 2002). The range of topics served by the CC application is disjoint from
those served by the OS application. The baseline language model is a trigram built from the above
corpus, with 3337 unigram, 40,821 bigram, and 23,360 trigram probabilities after shrinking.

In the CC domain, we have a 2000 utterance manually transcribed test set, and approximately
1050 h of untranscribed in-domain utterances for unsupervised adaptation. For all of the results,
we produce word lattices or one-best transcriptions for the untranscribed in-domain utterances.
Using the counts obtained from those transcriptions, the OS baseline model is adapted using
the MAP algorithm with the prior distribution as described in the previous section.
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The experiments compare word accuracy results for two trials: word lattice sampling with 1000
samples and one-best transcription. We varied the amount of untranscribed data provided to the
training algorithm, to see its effect. Fig. 1 plots the results versus the baseline from 0 to 300 h of in-
domain unlabeled data. In Fig. 2 the results for all of the 1050 h of unlabeled data are shown,
showing the data size on a log scale. With all of the unlabeled data included, both methods pro-
vide a 3.7% improvement in word accuracy over the baseline model. The Good-Turing sampling
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Fig. 1. Word accuracy versus hours of unlabeled utterances for adaptation based on word lattice sampling and ASR
one-best output, for up to 300 h of in-domain utterances.
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Fig. 2. Word accuracy versus hours of unlabeled utterances for adaptation based on word lattice sampling and ASR
one-best output, with the hours plotted in log scale.
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approach converges more quickly than the one-best approach, providing a 0.6% advantage when
the amount of unlabeled data is limited to 57 h. In the limit, however, the one-best reaches the
same level of performance.

For the purpose of perplexity computation, we mapped out-of-vocabulary words (3.5% of to-
kens in the test set) to an unknown token, which was reserved a unigram probability of 0.00001.
Fig. 3 plots perplexity versus hours of unlabeled training data, with the hours in log scale. From
this we can see that, indeed, the one-best approach catches up with the lattice sampling approach
in terms of perplexity as well as word accuracy. Fig. 4 plots perplexity versus word accuracy. The
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Fig. 3. Perplexity versus hours of unlabeled utterances for adaptation based on word lattice sampling and ASR one-
best output, with the hours plotted in log scale.
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Fig. 4. Word accuracy versus perplexity for adaptation based on word lattice sampling and ASR one-best output.
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one-best approach provides somewhat better word accuracy than the lattice sampling approach at
the same perplexity level, indicating that some of the improvements in modeling provided by the
lattice sampling are not particularly useful to the recognizer.

To verify that these results hold up in different domains, we revisited the SSNIFR voicemail
adaptation from Section 3.1. In this domain, we found results consistent with the results presented
in this section. Unsupervised adaptation over the 17-hour training set by sampling word lattices
yielded a 0.2% improvement over adaptation using the ASR transcripts.

3.2.4. Conclusions
The one-best results in the last section are consistent with the results in Section 3.1 in that unsu-

pervised MAP adaptation provides accuracy gains even though the baseline accuracy for this task
is much lower. The results on this task show that in addition, there is a small, consistent gain to be
had by using the word lattices, when the amount of unlabeled data is limited. These results also
show that when presented with a very large adaptation sample, there is no advantage of using lat-
tices instead of transcripts.

4. MAP adaptation of PCFGs

The MAP formulation presented in Section 2 directly applies to many common models used in
natural language processing, including n-tag part-of-speech (POS) tagging models, finite-state
shallow parsing models, or probabilistic context-free grammars (PCFGs). In these models, the
states s in Eq. (3) correspond to conditioning variables and the weights xs,i are the conditional
probability estimates for the conditioned variables. For example, in a bi-tag POS tagger, the prob-
ability of each POS tag tk is conditioned on the previous tag tk $ 1, i.e. s = tk $ 1, and
xs,i = P(tkjtk $ 1).

In this section the MAP adaptation framework is applied to a PCFG used by a statistical par-
ser. The PCFG, parser and the counts involved in the MAP adaptation process are first described
in Section 4.1, then experimental results are described in Section 4.2.

4.1. Grammar and parser

A context-free grammar (CFG) G = (V,T,P,S#) consists of a set of non-terminal symbols V, a
set of terminal symbols T, a start symbol S# 2 V, and a set of rule productions P of the form:
A! c, where A 2 V and c2(V [ T)*. A probabilistic context-free grammar (PCFG) is a CFG
with a probability assigned to each rule, such that the probabilities of all rules expanding a given
non-terminal sum to one; specifically, each right-hand side has a probability given the left-hand
side of the rule. 3

The MAP formulation in Eq. (3) directly applies to PCFGs. Let s denote the left-hand side of a
production, and xs,i the ith possible expansion of s. The MAP estimate for the probability of that

3 An additional condition for well-formedness is that the PCFG is consistent or tight, i.e. there is no probability mass
lost to infinitely large trees. Chi and Geman (1998) proved that this condition is met if the rule probabilities are
estimated using relative frequency estimation from a corpus.

58 M. Bacchiani et al. / Computer Speech and Language 20 (2006) 41–68



expansion, P(xs,ijs), is obtained from Eq. (3). The cIs;i and cOs;i counts involved in that estimation
are obtained from the frequencies of xs,i expansions following a left-hand side s in the in-domain
and out-of-domain samples, respectively. Similarly, the CI

s and CO
s counts are obtained from the

frequencies of observing the left-hand side s in either domain. Here, as in MAP adaptation of n-
gram models, various choices of the parameterization of the prior distribution exist.

For the empirical trials, we used a top-down, left-to-right (incremental) statistical beam-search
parser (Roark, 2001a; Roark, 2004). We refer readers to the cited papers for details on this parsing
algorithm. Briefly, the parser maintains a set of candidate analyses, each of which is extended to
attempt to incorporate the next word into a fully connected partial parse. As soon as ‘‘enough’’
candidate parses have been extended to the next word, all parses that have not yet attached the
word are discarded, and the parser moves on to the next word. This beam search is parameterized
with a base beam parameter d, which controls how many or how few parses constitute ‘‘enough’’.
Candidate parses are ranked by a figure-of-merit, which promotes better candidates, so that they
are worked on earlier. The figure-of-merit consists of the probability of the parse to that point
times a look-ahead statistic, which is an estimate of how much probability mass it will take to con-
nect the parse with the next word. It is a generative parser that does not require any pre-process-
ing, such as POS tagging or chunking. It has been demonstrated in the above papers to perform
competitively on standard statistical parsing tasks with full coverage. Baseline results below will
provide a comparison with other well known statistical parsers.

The PCFG is a Markov grammar (Collins, 1997; Charniak, 2000), i.e. the production probabil-
ities are estimated by decomposing the joint probability of the categories on the right-hand side
into a product of conditionals via the chain rule, and making a Markov assumption. Thus, for
example, a first order Markov grammar conditions the probability of the category of the ith child
of the left-hand side on the category of the left-hand side and the category of the (i $ 1)th child of
the left-hand side. The benefits of Markov grammars for a top-down parser of the sort we are using
is detailed in Roark (2004). Further, as in Roark (2001) and Roark (2004), the production prob-
abilities are conditioned on the label of the left-hand side of the production, as well as on features
from the left-context. The model is smoothed using standard deleted interpolation, wherein a mix-
ing parameter l is estimated using EM on a held out corpus, such that probability of a production
A! c, conditioned on j features from the left context, X j

1 ¼ X 1 . . .X j, is defined recursively as

PðA ! cjX j
1Þ ¼ P ðcjA;X j

1Þ ¼ ð1$ lÞbP ðcjA;X j
1Þ þ lP ðcjA;X j$1

1 Þ; ð25Þ

where bP is the maximum likelihood estimate of the conditional probability. For MAP adaptation
purposes, s ¼ A;X j

i . These conditional probabilities decompose via the chain rule as mentioned
above, and a Markov assumption limits the number of previous children already emitted from
the left-hand side that are conditioned upon. These previous children are treated exactly as other
conditioning features from the left context. Table 8 gives the conditioning features that were used
for all empirical trials in this paper. There are different conditioning features for parts-of-speech
(POS) and non-POS non-terminals. Deleted interpolation leaves out one feature at a time, in the
reverse order as they are presented in the Table 8. See Roark (2004) for more details on the pars-
ing approach.

Deleted interpolation with EM was used for smoothing the parsing model, rather than the Katz
backoff methods used for the n-gram language modeling in Section 3, for several reasons:
EM smoothed models outperform Katz smoothed models slightly on this task; the EM approach
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simplifies unsupervised adaptation fromweighted hypotheses; and sinceEMwas used previously for
this parsing approach, simple comparisons with the previously published baselines are possible. The
MAP adaptation approaches being reported here are straightforwardly applicable tomost common
smoothing approaches, so there was no strong reason to change the method used previously.

The PCFG used for these trials was induced using relative frequency estimation from a trans-
formed treebank. The trees are transformed with a selective left-corner transformation (Johnson
and Roark, 2000) that has been flattened as presented in Roark (2001b). This transform is only
applied to left-recursive productions, i.e. productions of the form A! Ac. The transformed trees
look as in Fig. 5. The transform has the benefit for a top-down incremental parser of this sort of
delaying many of the parsing decisions until later in the string, without unduly disrupting the
immediate dominance relationships that provide conditioning features for the probabilistic model.
The parse trees that are returned by the parser are then de-transformed to the original form of the
grammar for evaluation. 4

For the trials reported in the next section, the base beam parameter is set at d = 10. In order to
avoid being pruned, a parse must be within a probability range of the best scoring parse that has
incorporated the next word. Let k be the number of parses that have incorporated the next word,
and let eP be the best probability from among that set. Then the probability of a parse must be
above

~Pk3
10d

to avoid being pruned.

4.2. Experimental results

To evaluate MAP adapted PCFGs for statistical parsing, we experimented with two corpora
from the Penn Treebank II: the Wall St. Journal treebank (WSJ) and the treebank of the Brown
corpus. Adaptation in both directions was evaluated: from WSJ to Brown and vice versa. For the
Wall St. Journal portion, we used the standard breakdown: Sections 2–21 were kept for training
data; Section 24 was held-out development data; and Section 23 was for evaluation. For the
Brown corpus portion, we obtained the training and evaluation sections used in Gildea (2001).
In that paper, no held-out section was used for parameter tuning 5, so we further partitioned

4 See Johnson (1998) for a presentation of the transform/de-transform paradigm in parsing.
5 According to the author, smoothing parameters for his parser were based on the formula from Collins (1999).

Table 8
Conditioning features for the probabilistic CFG used in the reported empirical trials

Features for non-POS left-hand sides Features for POS left-hand sides

0 Left-hand side (LHS) 0 Left-hand side (LHS)
1 Last child of LHS 1 Parent of LHS (PAR)
2 2nd last child of LHS 2 Last child of PAR
3 3rd last child of LHS 3 Parent of PAR (GPAR)
4 Parent of LHS (PAR) 4 POS of C-Commanding head
5 Last child of PAR 5 C-Commanding lexical head
6 Parent of PAR (GPAR) 6 Next C-Commanding lexical head
7 Last child of GPAR
8 First child of conjoined category
9 Lexical head of current constituent
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the training data into kept and held-out data. The sizes of the corpora are given in Table 9, as well
as labels that are used to refer to the corpora in subsequent tables.

4.2.1. Baseline performance
The first results are for parsing the Brown corpus. Table 10 presents our baseline performance,

compared with the Gildea (2001) results. Our system is labeled as !MAP". All parsing results are
presented as labeled precision (LP) and labeled recall (LR), as well as F-measure, which is defined
as 2(LR)(LP)/(LR + LP). Whereas (Gildea, 2001) reported parsing results just for sentences of
length less than or equal to 40, our results are for all sentences. The goal is not to improve upon
Gildea"s parsing performance, but rather to try to get more benefit from the out-of-domain data.
While our performance is 0.5–1.5% better than Gildea"s, the same trends hold – low eighties in
accuracy when using the Wall St. Journal (out-of-domain) training; mid eighties when using
the Brown corpus training. Notice that using the Brown held out data with the Wall St. Journal

Table 9
Corpus sizes

Wall St. Journal Brown corpus

Training Held out Eval Training Held out Eval

Label WSJ;2-21 WSJ;24 WSJ;23 Brown;T Brown;H Brown;E
Sentences 39,832 1346 2416 19,740 2078 2425
Words 950,028 32,853 56,684 373,152 40,046 45,950

Table 10
Parser performance on Brown;E, baselines

System Training Heldout LR LP F

Gildea WSJ;2-21 80.3 81.0 80.6
MAP WSJ;2-21 WSJ;24 81.3 80.9 81.1
MAP WSJ;2-21 Brown;H 81.6 82.3 81.9
Gildea Brown;T,H 83.6 84.6 84.1
MAP Brown;T Brown;H 84.4 85.0 84.7

Note that the Gildea results are for sentences 640 words in length.

Fig. 5. Three representations of NP modifications: (a) the original treebank representation; (b) selective left-corner
representation; and (c) a flat structure that is unambiguously equivalent to (b).
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training improved precision substantially. Tuning the parameters on in-domain data can make a
big difference in parser performance. Choosing the smoothing parameters as Gildea did, based on
the distribution within the corpus itself, may be effective when parsing within the same distribu-
tion, but appears less so when using the treebank for parsing outside of the domain.

Table 11 gives the baseline performance on Section 23 of the WSJ Treebank. Note, again, that
the Gildea results are for sentences 640 words in length, while all others are for all sentences in the
test set. Also, Gildea did not report performance of a Brown corpus trained parser on the WSJ.
Our performance under that condition is not particularly good, but again using an in-domain held
out set for parameter tuning provided a substantial increase in accuracy, somewhat more in terms
of precision than recall. Our baseline results for a WSJ Sections 2–21 trained parser are slightly
better than the Gildea parser, at more-or-less the same level of performance as Charniak
(1997) and Ratnaparkhi (1999), but several points below the best reported results on this task.

Table 12 gives the MAP baseline performance on WSJ;23, with models trained on fractions of
the entire 2–21 test set. Sections 2–21 contain approximately 40,000 sentences, and we partitioned
them by percentage of total sentences. From Table 12 we can see that parser performance de-
grades quite dramatically when there is less than 20,000 sentences in the training set, but that even
with just 2000 sentences, the system outperforms one trained on the Brown corpus (80.5% vs.
77.0% F-measure).

4.2.2. Supervised adaptation
Analogous to the n-gram experiments reported in Section 3.1.2 we first investigate the effect of

using different parameterizations of the prior distribution in a supervised MAP adaptation

Table 11
Parser performance on WSJ;23, baselines

System Training Heldout LR LP F

MAP Brown;T Brown;H 76.0 75.4 75.7
MAP Brown;T WSJ;24 76.9 77.1 77.0
Gildea WSJ;2-21 86.1 86.6 86.3
MAP WSJ;2-21 WSJ;24 86.9 87.1 87.0

Charniak (1997) WSJ;2-21 WSJ;24 86.7 86.6 86.6
Ratnaparkhi (1999) WSJ;2-21 86.3 87.5 86.9
Collins (1999) WSJ;2-21 88.1 88.3 88.2
Charniak (2000) WSJ;2-21 WSJ;24 89.6 89.5 89.5
Collins (2000) WSJ;2-21 89.6 89.9 89.7

Note that the Gildea results are for sentences 640 words in length. All others include all sentences.

Table 12
Performance of the MAP parser on WSJ;23, trained on variously sized subsets of WSJ;2-21 and using WSJ;24 as the
held out set

Training set size (%) 100 75 50 25 10 5

LR 86.9 86.6 86.3 84.8 82.6 80.4
LP 87.1 86.8 86.4 85.0 82.6 80.6
F-measure 87.0 86.7 86.4 84.9 82.6 80.5
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approach. Both a count merging and model interpolation approach were evaluated. Table 13 pre-
sents parsing results on the Brown;E test set for models using both in-domain and out-of-domain
training data. The table gives the adaptation (in-domain) treebank that was used, and the param-
eterization of the prior distribution. Gildea (2001) merged the two corpora, which simply adds the
counts from the out-of-domain treebank to the in-domain treebank, i.e. uses Eq. (5) with a

b ¼ 1.
This resulted in a 0.25 improvement in the F-measure. In our case, combining the counts in this
way yielded 0.5%, perhaps because of the in-domain tuning of the smoothing parameters. How-
ever, when we optimize a

b empirically on the held-out corpus, we can get nearly a 1% improvement.
Model interpolation in this case performs nearly identically to count merging.

Adaptation to the Brown corpus, however, does not adequately represent what is likely to be
the most common adaptation scenario, i.e. adaptation to a consistent domain with limited in-
domain training data. The Brown corpus is not really a domain; it was built as a balanced corpus,
and hence is the aggregation of multiple domains. The reverse scenario – Brown corpus as out-
of-domain parsing model and Wall St. Journal as novel domain – is perhaps a more natural
one. In this direction, Gildea (2001) also reported very small improvements when adding in the
out-of-domain treebank. This may be because of the same issue as with the Brown corpus, namely
that the optimal ratio of in-domain to out-of-domain is not 1 and the smoothing parameters need
to be tuned to the new domain; or it may be because the new domain has a million words of train-
ing data, and hence has less use for out-of-domain data. To tease these apart, we partitioned the
WSJ training data (Sections 2–21) into smaller treebanks, and looked at the gain provided by
adaptation as the in-domain observations grow. These smaller treebanks provide a more realistic
scenario: rapid adaptation to a novel domain will likely occur with far less manual annotation of
trees within the new domain than can be had in the full Penn Treebank.

Table 14 presents parsing accuracy when a model trained on the Brown corpus is adapted with
part or all of the WSJ training corpus. It compares the performance of an adapted parser with one
obtained by training on the same sample (i.e. Table 12). Performance improvements over the par-
ser trained on Brown;T, using the WSJ;24 section as the heldout set range from 6.05% F-measure
using 5% of the adaptation set to 10.35% using the entire set.

From this point forward, we only present results for count merging, since model interpolation
consistently performed 0.2–0.5% below the count merging approach, which is consistent with
the results on n-gram adaptation. The a

b mixing ratio was empirically optimized on the held out
set when the in-domain training was just 10% of the total; this optimization makes over 1% dif-
ference in accuracy. Like Gildea, with large amounts of in-domain data, adaptation improved our

Table 13
Parser performance on Brown;E, supervised adaptation

System Training Adapt Prior Param Performance F (LR,LP) DF

Gildea WSJ;2-21 Brown;T,H Merge a
b ¼ 1 84.35 (83.9,84.8) 0.25

MAP WSJ;2-21 Brown;T Merge a
b ¼ 1 85.25 (84.9,85.6) 0.55

MAP WSJ;2-21 Brown;T Merge a
b ¼ 0:2 85.65 (85.4,85.9) 0.95

MAP WSJ;2-21 Brown;T Interp. k = 0.25 85.60 (85.3,85.9) 0.90

The baseline performance for the Gildea parser is 84.1 (83.6,84.6) and that parser did not use a held out set. The
baseline performance for the MAP parser is 84.7 (84.4,85.0) and used Brown;H as the held out set.
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performance by 0.5% or less. When the amount of in-domain data is small, however, the impact of
adaptation is much greater.

4.3. Unsupervised adaptation

For the unsupervised adaptation experiments of n-gram models, the in-domain data were auto-
matically annotated using the output of a speech recognizer using the out-of-domain n-grammodel.
Here, we use the parsing model trained on out-of-domain data, and output a set of candidate parse
trees for the strings in the in-domain corpus, with their normalized scores. These normalized scores
(posterior probabilities) are then used to give weights to the features extracted from each candidate
parse, in just the way that they provide expected counts for an expectationmaximization algorithm.

For the unsupervised trials that we report, we collected up to 20 candidate parses per string. 6

We were interested in investigating the effects of adaptation, not in optimizing performance, hence
we did not empirically optimize the mixing parameter a

b for the new trials, so as to avoid obscuring
the effects due to adaptation alone. Rather, we used the best performing parameter from the
supervised trials, namely 0.2. Since we are no longer limited to manually annotated data, the
amount of in-domain WSJ data that we can include is essentially unlimited. Hence the trials re-
ported go beyond the 40,000 sentences in the Penn WSJ Treebank, to include up to five times that
number of sentences from other years of the WSJ.

We did not use the compensatory scaling factor from Eq. (24) for these unsupervised adapta-
tion trials, because in this scenario there was little need: the baseline accuracy is much higher (75%
versus 50%), leading to less noise; and the amount of unsupervised data reaches only about 10
times the amount of out-of-domain (supervised) data, whereas in the ASR trials using compensa-
tory scaling, the unsupervised data reached as much as 60 times the size of the out-of-domain
data. For that reason, we simplified the comparisons with supervised adaptation by leaving the
mixing parameterizations the same.

6 Because of the left-to-right, heuristic beam-search, the parser does not produce a chart, rather a set of completed
parses.

Table 14
Parser performance on WSJ;23, supervised adaptation

System Fraction of WSJ;2-21 (%) a
b Trained F (LR,LP) Adapted F (LR,LP) DF

Gildea 100 1 86.35 (68.1,86.6) 86.60 (86.3,86.9) 0.25
MAP 100 0.2 87.00 (86.9,87.1) 87.35 (87.2,87.5) 0.35
MAP 75 0.2 86.7 (86.6,86.8) 87.2 (87.1,87.3) 0.5
MAP 50 0.2 86.35 (86.3,86.4) 86.8 (86.7,86.9) 0.45
MAP 25 0.2 84.9 (84.8,85) 85.4 (85.3,85.5) 0.5
MAP 10 0.2 82.6 (82.6,82.6) 84.35 (84.3,84.4) 1.75
MAP 10 1 82.6 (82.6,82.6) 83.3 (83.2,83.4) 0.7
MAP 5 0.2 80.5 (80.4,80.6) 83.05 (83,83.1) 2.55

All models use Brown;T,H as the out-of-domain treebank. Trained models are built from the fractions of WSJ;2-21,
with no out-of-domain treebank. The performance of the parser trained on the Brown;T corpus using WSJ;24 as
heldout data is 77.0 (76.9,77.1).
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Table 15 shows the results of unsupervised adaptation as we have described it. Note that these
improvements are had without seeing any manually annotated Wall St. Journal treebank data.
Using the approximately 40,000 sentences in f2-21, we derived a 3.8% F-measure improvement
over using just the out-of-domain data. This is 37% of the 10.35% gain obtained by supervised
adaptation on that same sample. Going beyond the size of the Penn Treebank, we continued to
gain in accuracy, reaching a total F-measure improvement of 4.2% with 200 thousand sentences,
approximately 5 million words. A second iteration with this best model, i.e. re-parsing the 200
thousand sentences with the adapted model and re-training, yielded an additional 0.65% F-measure
improvement, for a total F-measure improvement of 4.85% over the baseline model.

A final unsupervised adaptation scenario that we investigated is self-adaptation, i.e. adaptation
on the test set itself. Because this adaptation is completely unsupervised, thus does not involve
looking at the manual annotations at all, it can be equally well applied using the test set as the
unsupervised adaptation set. Using the same adaptation procedure presented above on the test
set itself, i.e. producing the top 20 candidates from WSJ;23 with normalized posterior probabil-
ities and re-estimating, we produced a self-adapted parsing model. This yielded an F-measure
accuracy of 76.8, which is a 1.1% improvement over the baseline.

4.4. Conclusions

The MAP domain adaptation results for PCFG grammars are consistent with the results ob-
tained for n-gram models. Use of either supervised or unsupervised adaptation improves accuracy
over an unadapted system. This shows that the MAP framework is applicable to models other
than n-grams alone and that the adaptation results are not strongly dependent on the type of mod-
el that is adapted.

5. Discussion

This paper has shown that the MAP framework directly applies to the domain adaptation
problem for both n-gram and PCFG models. Experimental results show that MAP adaptation

Table 15
Parser performance on WSJ;23, unsupervised adaptation

Adaptation sentences Iteration Performance F (LR,LP) DF

0 0 75.70 (76.0,75.4)
4000 1 78.25 (78.6,77.9) 2.55

10,000 1 78.45 (78.9,78.0) 2.75
20,000 1 78.90 (79.3,78.5) 3.20
30,000 1 79.30 (79.7,78.9) 3.60
39,832 1 79.50 (79.9,79.1) 3.80
100,000 1 79.45 (79.7,79.2) 3.75
200,000 1 79.90 (80.2,79.6) 4.20
200,000 2 80.55 (80.6,80.5) 4.85

For all trials, the base training is Brown;T, the held out is Brown;H plus the parser output for WSJ;24, and the mixing
parameter a

b is 0.20.
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to a new domain provides accuracy improvements using either supervised adaptation, unsuper-
vised adaptation or a hybrid approach.

The n-gram adaptation results in Section 3.1 and PCFG adaptation results in Section 4.2 seem
to suggest that the prior distribution parameterization corresponding to a count merging ap-
proach slightly outperforms that of a model interpolation approach. The n-gram results also show
that on a 17-hour sample, about half of the supervised accuracy improvement was obtained by
unsupervised adaptation. For PCFG adaptation this fraction was about one third.

The results on a much larger adaptation sample reported in 3.2 show that for moderate adap-
tation samples (about 50 h) there is an advantage in using lattice-based adaptation as opposed to
transcription-based adaptation. It also shows that this advantage disappears with an increasing
adaptation sample, showing no benefits at a 1050-hour adaptation sample.

Adaptation using transcripts is simple, so this is likely to be the method of choice in the case
when the amount of unlabeled data is large. Since there is no manual labeling required, in many
cases it should be possible to generate essentially arbitrary amounts of training data for a given
domain. However, when the amount of unlabeled data is limited, a lattice-based approach seems
more attractive, as it provides faster accuracy improvements with increasing adaptation sample
size.

The general MAP formulation allowed us, in the unsupervised case, to use a more effective
parameterization of the adaptation. It may well be that, in certain circumstances, more fine-
grained control of the adaptation parameters, which take into account the specific conditioning
state s, will yield improvements over the simple count merging or model interpolation parame-
terizations. This formulation provides the framework within which such explorations can take
place.
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