
M
ar

ke
d

pr
oo

fs

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

8

A Survey of Discriminative
Language Modeling Approaches
for Large Vocabulary Continuous
Speech Recognition

Brian Roark

Discriminative training of language models has been the focus of renewed research interest
recently, and significant improvements to high accuracy large vocabulary continuous speech
recognition have been demonstrated through the use of such models. In this chapter, we
review past and present work on this topic, and focus in particular on three key issues:
training data, learning algorithms and features. We will show how simple models trained
under standard approaches can provide significant accuracy gains with negligible impact on
decoding time, and how richer models can provide further accuracy gains. We will argue that
while the published results are promising, many practical issues remain under-explored, so
that further improvements might be expected as the best practices become more developed.

8.1 Introduction

It has long been the case that system improvements in statistical speech recognition have
come far more from acoustic modeling innovations than from language modeling innovations
– to the extent that some top-notch researchers have quit working on language modeling
for speech recognition, sometimes with a parting message of warning to future researchers
against expecting system improvements. (See the extended version of (Goodman 2001),

Automatic Speech and Speaker Recognition: Large Margin and Kernel Methods Joseph Keshet and Samy Bengio
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120 AUTOMATIC SPEECH AND SPEAKER RECOGNITION

which can be found with the search engine query: ‘language modeling’ ‘all hope abandon.’)
There are a number of reasons why little progress was observed due to language modeling,
including (though certainly not confined to): extreme sparse data; optimization of objectives
only very loosely corresponding to the true system objective; and difficulty integrating
disparate potential features into a single model. Sparse data is a problem that can be alleviated
with increased training data, which some may not consider a particularly interesting solution,
though it can require solving difficult problems that arise when scaling up algorithms to
handle larger data sets. The continued improvement of performance in speech recognition
and machine translation due to language model training on extremely large training sets
(Emami et al. 2007; Popat et al. 2007) illustrates the extent to which sparse data has been
impacting language models. Even what have been considered very large corpora in the past do
not provide adequate training for multinomial n-gram models with millions or even billions
of parameters. In Popat et al. (2007), for example, the models have hundreds of billions
of parameters (corresponding to n-gram features of various orders), which are trained on
corpora of several trillion tokens; they find a linear gain with each doubling of the training
data, with no indication of a plateau.

In this chapter, we will focus on language modeling improvements in large vocabulary
continuous speech recognition (LVCSR) that are not due to an increase in the amount of
training data, but rather to improvements in the other two dimensions of the problem that were
identified in the previous paragraph: optimization of parameters with respect to objectives
more closely related to actual system objectives; and the inclusion of a large number of
heterogeneous feature sets derived from the output string hypotheses.

Neither of these two considerations is new to research in language modeling for LVCSR.
It was suggested in Jelinek (1996) to train an ‘acoustic-sensitive’ language model whose
parameters would be trained to minimize the expected uncertainty of the spoken text given the
acoustic signal. Discriminative training methods that were successfully pursued for acoustic
modeling, such as MMIE (Bahl et al. 1986) or related error-corrective training methods
(Bahl et al. 1993; Juang et al. 1997), spurred initial research into discriminative modeling
approaches such as Chen et al. (2000); Stolcke and Weintraub (1998); Stolcke et al. (2000),
with modest utility. In addition, generative maximum entropy models have been explored for
combining diverse features within a single model (Khudanpur and Wu 2000; Rosenfeld et al.
2001), including n-grams, topic labels and syntactic features. Thus the notion of exploiting
diverse feature sets is not new to the field; and neither are discriminative approaches to
parameter estimation.

Over the past few years, however, there has been a renewed effort in this direction, driven
in large part by developments in the machine learning community. The benefits of global
conditional modeling for sequence learning (Lafferty et al. 2001) and the application of large
margin methods to sequence processing through the Perceptron algorithm (Collins 2002;
Freund and Schapire 1999) have provided a unifying framework within which many related
methods can be pursued and compared. The learning and inference algorithms associated
with some of these approaches are efficient enough to be scaled up, so that models making
use of very large feature sets can be effectively trained and used for inference. Well-motivated
and theoretically grounded regularization techniques have been shown to effectively control
for the overtraining that language models have long suffered from. Strong empirical gains
have been realized on difficult tasks and continue to be realized up to the present within this
paradigm.
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DISCRIMINATIVE LANGUAGE MODELING 121

This chapter addresses discriminative language modeling approaches in general, not
kernel approaches in particular. The approaches that are the focus of this chapter do not
represent the only strand of research focused on leveraging competing LVCSR system
hypotheses to achieve reductions in error rate. The approaches we describe here are focused
on training models with a discriminative objective function, not inference techniques for
optimizing an objective. Hence approaches such as Minimum Bayes-Risk classification (Goel
and Byrne 2000) or confusion networks (‘sausages’) (Mangu et al. 2000) will not be covered
here, although methods exist for learning their edit distance (Shafran and Byrne 2004)1. Note
that inference using such techniques can also be pursued with models trained as presented
here, hence the techniques are complementary. We will also omit any detailed discussion
of methods that perform post-processing on LVCSR output to correct specific errors, such
as induction of transformational rules on the output (Mangu and Padmanabhan 2001) or
methods for proposing alternatives that are not present in the system output and choosing
between them (Ringger and Allen 1996; Zhou et al. 2006b). Again, such methods could
also be applied to the output of systems using models trained with methods presented in this
survey, hence they are complementary to what will be discussed here. Also, we have chosen to
focus on large vocabulary systems, hence will not discuss the application of similar methods
in small vocabulary applications, e.g. that in Kuo et al. (2002).

8.2 General Framework

Most of the work covered in this chapter falls within the general framework of linear models,
which we present here largely following the notation of Collins (2002), much as presented
in (Roark et al. 2007). These approaches assume the presence of several components, as
follows.

First, these are supervised approaches, hence requiring the presence of training data,
consisting of a set of m input sequences x̄i ∈ X and corresponding reference (ground truth)
output sequences ȳref

i ∈ Y , where X denotes the set of possible inputs and Y the set of
possible outputs. In the case of language modeling for LVCSR, using a vocabulary !, the
input set X consists of acoustic samples, the output set consists of all possible transcriptions,
i.e. Y = !∗, and the reference (ground truth) output sequence for any given utterance is the
manual (human) transcription of that utterance.

Next, for each input sequence x̄ ∈ X , the approaches require some mechanism for
identifying a set of output candidates, which is often denoted as a function GEN(x̄) ⊆ Y .
For example, GEN(x̄) could be the word lattice output or n-best list from a baseline LVCSR
system.

Third, there must be a mapping from each input:output pairing (x̄, ȳ) ∈ X × Y to a real
valued d-dimensional feature vector ψ(x̄, ȳ) ∈ Rd , for some d . In the current case, this could
be a mapping from a string to the set of n-grams of order ≤ k that occur in the string. An
example feature would then be something like ‘feature 1236: number of times the bigram
“dog house” occurs in the string’. Each explicit n-gram to be included in the model would be
a separate feature in the vector.

1The methods for learning the edit distance used in such techniques are focused on learning a weighted
transduction between reference transcripts and LVCSR system outputs. This learned transduction can be seen as
a form of discriminative language modeling, since it effectively moves the centroid closer to the reference.
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122 AUTOMATIC SPEECH AND SPEAKER RECOGNITION

Finally, there must be a real valued parameter vector α ∈ Rd of the same dimension d as
the feature vector. For example, feature 1236 mentioned above may have a parameter value
of 0.2 assigned to it. Methods for determining the parameter values associated with each
feature are perhaps the key difference between many of the different approaches that will be
presented here, though they are all discriminative rather than generative approaches.

Given these four components, we can define the best scoring (or 1-best) output ȳmax
i for a

given input xi as

ȳmax
i = arg max

ȳ∈GEN(x̄i )
ψ(x̄i , ȳ) · α, (8.1)

where ψ(x̄i , ȳ) · α is the dot product.
In the remainder of this section, we will focus on each of these four components in turn,

highlighting some of the key trends and variations in the work from this area.

8.2.1 Training Data and the GEN Function

Training data for discriminative language modeling consists of input speech recordings and
reference output strings representing the gold standard transcription of the speech. The role
of the GEN function is typically taken by a baseline LVCSR system, so that GEN(x̄) for
some input speech is an n-best list or word lattice. Hence most discriminative language
modeling approaches fall within the range of approaches more traditionally known as
n-best or lattice rescoring. Working from lists and lattices, however, is not a requisite part of
the approach, and some recent papers (Kuo et al. 2007; Lin and Yvon 2005) have modified
the weights directly within the baseline recognition system, rather than adopting a rescoring
or reranking paradigm. See section 8.2.2 for further details on directly updating the baseline
recognition system, where it is discussed as a method for encoding features to allow for
efficient processing.

The output of LVCSR systems can be thought of as weighted, acyclic finite state automata,
with words and weights labeling the arcs. Figure 8.1 shows three kinds of representation of
weighted output from an LVCSR system. For all such weighted automata, the semiring must
be specified, so that the weights can be interpreted. The automata in Figure 8.1 are in the
Real semiring, meaning that the weights along a path are multiplied, and when two paths
are combined, their weights are added, which is the appropriate semiring when dealing with
probabilities2. In the figure, the weights define a conditional probability distribution over
three possible strings: ‘a b c’ with probability 0.3; ‘a g c’, with probability 0.3; and ‘e d c
c’, with probability 0.4. Although the weights are presented as conditional probabilities, they
can be arbitrary.

Not all weighted finite-state automata (WFA) can be determinized, but any acyclic WFA
can be determinized (Mohri and Riley 1997). The result of determinization on the n-best
list automaton in Figure 8.1(a) is the deterministic tree in Figure 8.1(b). As with the original
representation, a candidate string is represented by the concatenation of symbols labeling
the arcs of any path from the start state at the left to a final state denoted with a double

2The most common semirings in speech processing are the Tropical and Log semirings, both of which are
appropriate for negative log probabilities. Both add weights along the path. The Tropical semiring takes the min of
two weights when combining paths, and the Log semiring takes the log of the sum of the exponentials: A ⊕ B =
− log(exp(−A) + exp(−B)).
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DISCRIMINATIVE LANGUAGE MODELING 123

(a) (b) (c)

Figure 8.1 Three weighted, acyclic finite-state automata representations of the output from
a speech recognizer: (a) n-best list; (b) deterministic tree; (c) deterministic word lattice. The
automata are in the Real semiring, and all three represent the same weighted distributions
over the three strings.

circle. What is key to notice from these figures is that determinization preserves the path
weight of every path in the automaton. Recall that weights are combined along a path in the
Real semiring by multiplying. Inspection will verify that all three of the paths in the original
automaton are present in the deterministic tree representation with the same path weight.

Deterministic WFA can be minimized, i.e. converted to a representation of exactly the
same weighted paths, but with a minimal number of states and arcs to represent it (Mohri
and Riley 1997). For the current example, this minimized WFA is shown in Figure 8.1(c).
These are word lattices, which are simply a more compact representation of a set of distinct
weighted hypotheses output from the LVCSR system. Efficient use of this kind of compact
representation allows for effective rescoring in scenarios where brute force enumeration
of all distinct candidates would be intractable. Effective use of these representations,
however, precludes the use of global features, unless they can be decomposed for dynamic
programming. Some approaches to discriminative language modeling, e.g. those making
use of long-distance dependencies uncovered via context-free parsing, will be forced to
operate on undeterminized or unminimized n-best representations, which limits the number
of candidates that can be tractably scored.

There are a couple of reasons to introduce WFA representations in this context. First, they
become important in the next section, when efficient feature mapping is discussed. Also, it
should be clear from the discussion that there is no difference between n-best lists and word
lattices, other than determinization and minimization – they both represent sets of competing
(weighted) candidate transcriptions. Even 1-best output of a system is a special case of these
acyclic WFA. Hence we can discuss the approaches in general, without having to specify
whether the data is in the form of n-best lists or lattices. We will thus henceforth refer to them
simply as lattices, which may or may not be determinized or minimized. General operations
on WFA can be used to specify operations on the lattices, including intersection, composition
with a transducer, and finding the minimum cost (or highest scoring) path.

Note that working within a reranking or rescoring paradigm has a few immediate
ramifications for the general modeling framework we are presenting. Most critically, it is not
guaranteed in this approach that the reference transcription is present in the lattice. Second,
if training lattices are produced for utterances that were also used for building the models
of the baseline recognizer, this may introduce a mismatch between training conditions and
testing conditions. These are two key issues investigated in Roark et al. (2004, 2007), and we
discuss them here in turn.

First Proof Ref: 38896e November 7, 2008



M
ar

ke
d

pr
oo

fs

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

124 AUTOMATIC SPEECH AND SPEAKER RECOGNITION

(a) Reference Transcript

If the reference transcript for a particular utterance is not in the lattice output in the training
data, then standard parameter estimation algorithms will be trying to achieve an objective that
cannot be reached. These parameter estimation algorithms will be discussed in section 8.2.3,
but, intuitively, an algorithm (such as the Perceptron algorithm) that penalizes candidates
other than the gold standard (reference) will move parameters to penalize every candidate if
the gold standard is not in the set of candidates, even the highest accuracy candidate in the
whole set.

One quick fix to this problem would be to append the reference transcript to the set of
candidates in the training set. The main problem with this is that it creates a great mismatch
between the training condition and the testing condition, in that the training examples are
being given better candidate sets than will be seen under testing conditions. Of lesser
significance is the problem of acquiring features derived from the baseline LVCSR system for
the reference transcript, if it was not one of its candidates. For example, the baseline system
score is typically a useful feature in the model. Obtaining the baseline system score for the
reference may require having some access to the baseline system models, to constrain the
decoder to output the reference.

A better solution is to define the gold standard candidate in terms of maximum accuracy
or minimum error rate. Then, if the reference is in the candidate set, it will be the gold
standard; otherwise, another candidate from the set is chosen as the gold standard, to avoid
the problems with parameter estimation. When the reference is present in the lattice, the
gold standard is unique. If the reference is not present in the lattice, then there may not be
a unique gold standard: more than one candidate may have the minimum error rate. The
results in Roark et al. (2004, 2007) empirically validate the utility of using a minimum error
rate gold standard versus a reference gold standard in the Perceptron algorithm. In those
papers, one gold standard is chosen from among the set of minimum error rate candidates; in
(Singh-Miller and Collins 2007), all members from the set were collectively used as the gold
standard in a loss-sensitive version of the Perceptron algorithm. See section 8.2.3 for more
details about parameter estimation when the reference is not in the lattice.

Note that this is also an issue when training outside of a rescoring or reranking paradigm,
as noted in Kuo et al. (2007), even with known training data. If the vocabulary is pruned,
there will be out-of-vocabulary (OOV) terms in the references which the closed vocabulary
LVCSR system cannot recognize. One method for decreasing the OOV rate in any of these
training scenarios, however, is to map terms to ‘equivalent’ items that are in the vocabulary,
e.g. legal spelling variations.

(b) Seen Versus Unseen Data

The second issue that was mentioned regarding the training data is the potential mismatch
between training and testing scenarios when training lattices are produced on previously seen
data. This is an issue with any kind of a reranking problem, and similar solutions to the one
that will be discussed here have been used for other such problems, e.g. (Collins 2000). In
fact, the problem is to minimize mismatch, because most problems have a constrained amount
of supervised training data (with both input and output sides of the mapping), hence the same
data will often be used both for training the baseline models and for training discriminative
language models. It is well-known that n-gram language models are overparameterized and
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DISCRIMINATIVE LANGUAGE MODELING 125

overtrained; the result of this is that the LVCSR output for seen data will have fewer errors
than the output for unseen data, and those errors that do occur may differ from the kinds of
error observed for unseen data. The discriminative reranking model will then learn to solve a
different problem than the one that will be encountered at test time. To obtain a useful model,
the mismatch needs to be reduced by producing training lattices in an unseen condition.

An unseen condition can be achieved through cross-validation, whereby the training data
is split into k subsets, and the baseline models for each subset j are trained on the other
k−1 subsets (1, . . . , j − 1, j + 1, . . . , k). Note that this can still result in a mismatch,
because the testing condition will use baseline models trained on all k subsets. The hope
is that, if k is large enough, the difference in performance when training on the extra section
will be relatively small, particularly compared with the difference in seen versus unseen
performance. Again, the results in Roark et al. (2004, 2007) empirically validate the utility of
cross-validating the baseline language model training: not cross-validating resulted in models
that achieved no gain over the baseline system, whereas cross-validation produced significant
word-error rate (WER) reductions of over 1% absolute.

While the presentation here has been on the importance of cross-validating the models
used in the baseline systems, previous work has only examined the utility of cross-validating
the language models, not the acoustic models. The reasons for this are twofold. First,
conventional wisdom is that acoustic models, by virtue of having far fewer parameters than
language models, tend not to overtrain to the same degree, so that the seen/unseen difference
in performance is relatively small. Second, while baseline n-gram models are relatively
easy and fast to train (even for large corpora), since they typically use relative frequency
estimation and simple smoothing to estimate the parameters, acoustic model training is a far
more intensive process, so that training a baseline acoustic model on a large training corpus
may take many days or more on multiple processors. Hence the cost of cross-validation is
high and the perceived benefit low. Even so, it would be of interest to know exactly how
much mismatch exists between seen and unseen data with respect to the acoustic model,
and whether this may actually impact the utility of training data for discriminative language
modeling.

8.2.2 Feature Mapping

The third component of the general framework that we are presenting is the mapping
from input/output pairs (x̄, ȳ) to a feature vector ψ(x̄, ȳ) ∈ Rd . In the current context,
there are two scenarios that we have discussed: reranking from lattices; and updating the
baseline LVCSR system directly. We will first discuss feature mapping for reranking, where
candidates are represented as an acyclic WFA of candidates; then for direct update of the
system.

For reranking, one approach to feature mapping is to simply perform feature mapping for
each candidate transcript independently. For example, if an existing statistical parser were to
be applied to the strings and the result used to extract features, then the particular parser may
not be able to handle anything other than a string at a time. This requires explicit enumeration
of all candidates, which will limit the number of candidates that can be considered for any
given utterance.

A more efficient strategy is to take advantage of shared structure in a word lattice to extract
features without having to explicitly enumerate every path in the lattice. This is particularly
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126 AUTOMATIC SPEECH AND SPEAKER RECOGNITION

important in LVCSR, where the number of competing hypotheses can be in the hundreds
of thousands or millions, and the feature set in the several millions. N-gram features are
popular in large part because they have an efficient finite-state structure, and this structure
can be exploited for efficient feature mapping that allows for large lattices to be rescored,
rather than small n-best lists. We will use a toy example to illustrate this. For more details on
n-gram model structure, see Allauzen et al. (2003) and Roark et al. (2004, 2007, 2004).

For simplicity, assume a vocabulary ! = {a,b,c}, and all strings consist of one or more
symbols from that vocabulary in sequence (!+). The output symbols will be feature indices,
which we will denote fk for feature with index k. For this example, let us assume the following
unigram and bigram features: {f1 = a; f2 = b; f3 =<s>a; f4 =<s>b; f5 = aa; f6 = ab; f7 =
a</s>; f8 = ba; f9 = ba; f10=b</s>}. Note that the begin-of-string symbol (<s>) and end-
of-string symbol (</s>) are implicit in the string and not part of the vocabulary. One can see
by inspection of this set that there are all unigram and bigram features including the symbols
‘a’ and ‘b’, but none including the symbol ‘c’, hence those n-grams will not map to any
feature in the set.

The finite-state transducer in Figure 8.2(a) maps from strings in {a,b,c}+ to feature indices
from this set. The start state (denoted with > to its left) implicitly encodes the begin-of-string
symbol, hence the first symbol in the string will be in a bigram beginning with <s>. There
are two special symbols in the transducer: φ, which represents a failure transition; and ε,
which represents the empty string. An arc labeled with φ is traversed if and only if there is
no arc leaving the state that is labeled with the next symbol in the input. No input symbols
are consumed or output symbols emitted when the φ transition is traversed. An arc with
an ε symbol labeling the input side can always be traversed without consuming an input
symbol, while outputting the symbol on the output side. An arc with an ε symbol labeling the
output side produces no output while consuming the symbol on the input side. When final
states (denoted with double circle) are reached and there is no more input, the transduction is
successful.

Let us step through a couple of examples. First the simple string ‘acb’, which we will
compose with transducer T1 from Figure 8.2(a). Beginning at the start state, there is an arc
labeled with ‘a’ on the input side, with f3 on the output side. From the destination state of
that arc, there is no arc with ‘c’ on the input side, so the failure transition (labeled with φ)
is traversed. From the destination state of that arc, there is an arc with ‘c’ on the input side,
which is a looping arc with ε (empty string, i.e. no feature) on the output side. The transition
from that state with ‘b’ on the input side has f2 on the output side. The destination state of
that arc is not a final state, but there is a transition with an ε on the input side which can be
traversed, which gives f10 on the output side and reaches a final state. Hence this transduction
gives the features: f3, f2 and f10. This is not, however, the total feature set, but rather the
highest order n-grams reached at each word. For example, feature f3 is the bigram ‘<s>a’,
but there should also be the unigram feature f1 associated with the ‘a’. In order to derive
the total feature set based on the highest order features, we compose the output sequence
to the transducer T2 in Figure 8.2(b). In that transducer, all features map to themselves, but
additionally all bigram features ending in an ‘a’ or ‘b’ then also map to the appropriate
unigram feature. The complete transduction from a string S to the feature set is S ◦ T1 ◦ T2,
where ◦ denotes the composition of finite-state transducers.

Note that these are both deterministic on the input side, i.e. every string in {a,b,c}+

has one and only one path through T1 ◦ T2. It should be straightforward for the reader
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(a) (b)

Figure 8.2 String sequence to feature set transducers: (a) from symbols to highest order
features; (b) from highest order features to total set of features.

to verify that the input string ‘bbacb’, when composed with T1 ◦ T2, yields the feature
sequence f4f2f9f2f8f1f2f10. Because this feature mapping uses standard finite-state transducer
transduction, word lattices encoded as finite-state automata can be composed with these
transducers, to produce output sequences for every path in the lattice corresponding to
features in the feature set. Multiple paths that share part of their structure will not need to be
mapped independently of each other, as they would be in non-deterministic representations
of n-best lists.

Note that, at test time, the feature identities are not of interest, but rather the scores of
the paths in the lattices, so that the best scoring candidate can be found. There is also a
compact finite-state automaton that can score the lattice with n-gram parameter weights,
without requiring transduction to the feature labels. The automaton in Figure 8.3 is in the
Tropical semiring (sum weights along a path), and makes use of roughly the same topology as
the transducer in Figure 8.2(a). Note that all arcs corresponding to bigram features must have
the sum of both the bigram feature weight and the corresponding unigram feature weight.
Parameter weights associated with bigrams containing the end-of-string symbol are encoded
in the final weight of the corresponding final state. Similar structure is used when going to n-
grams of higher order than bigrams. See Roark et al. (2004, 2007, 2004) for more information
about such finite-state n-gram model encoding.

Finite-state transducer encoding of the model is also a central topic in the recent work
looking at direct updating of parameters in the baseline LVCSR model rather than reranking
(Kuo et al. 2007; Lin and Yvon 2005). These works adopt an approach to efficient LVCSR
that involves building a finite-state ‘decoding graph’ off-line and performing optimizations
on this transducer, as described in detail in Mohri et al. (2002). The decoding graph is the
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Idx Param Feature

1 α1 a
2 α2 b
3 α3 <s>a
4 α4 <s>b
5 α5 aa
6 α6 ab
7 α7 a</s>
8 α8 ba
9 α9 bb

10 α10 b</s>

Figure 8.3 Deterministic automaton reading in symbols and assigning parameter weights.

result of combining an automata representation of an n-gram language model (G) with a
pronunciation dictionary represented as a finite-state transducer (L) and decision tree models
that split the phones in the pronunciations into context-dependent (CD) phone representations
(C). The composition of these weighted transducers3 C ◦ L ◦ G results in a single transducer,
which serves to guide decoding. Optimizations to this graph, such as determinization on the
input side and weight pushing, can result in a far more efficient search than combining these
models on-the-fly during search.

The idea pursued in Lin and Yvon (2005) and extended to full context-dependent LVCSR
systems in Kuo et al. (2007) is to directly update transition weights within the decoding
graph. To do this, they determine the state sequence through the decoding graph of the
reference transcription by optimally force aligning the transcription with the speech. Training
in Kuo et al. (2007) is an on-line procedure discussed in section 8.2.3 that compares the best
scoring state sequence with the state sequence derived from the reference, and updates the
transition weights accordingly. Hence each transition weight in the graph is an independent
feature within a log linear framework.

This approach to feature mapping brings up some interesting questions. First, what is
discriminative language modeling? In this instance, the features include context-dependent
phone identities as part of the state definition, and stochastic modeling of such features is
typically outside the range of language modeling. While it is not the intent of this chapter to
try to philosophically delimit the scope of this topic, it seems clear that the transition weights
in these graphs represent discrete symbol sequences rather than the Gaussian densities
modeled at the states, hence are certainly modeling the language not the acoustics. However,
it highlights the fact that there is little in this general framework to limit the kinds of features
that might be used, and that future work may find hybrid feature sets – e.g. for combining
syntactic and prosodic features – that will lead to substantial system improvements.

The second question that arises is, what do these features represent? The input stream of
the transducer is labeled with context-dependent phones, and the output stream is labeled
with words in the vocabulary, so in its simplest form, these features represent (CD phone ×

3Note that an automaton is a special case of a transducer where every symbol maps to itself.
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word) sub-sequences. These graphs, however, are optimized to increase the amount of shared
structure between words with similar CD phone realizations, hence the transitions themselves
may represent CD phones over sets of n-grams. These complicated composite features do
appear to have strong utility for this task (see Kuo et al. 2007 for empirical results), and
they capture key distinctions that are clearly lost in most language modeling approaches. The
downside of this approach is a loss of generalization from one phone sequence realization
of a word sequence to another realization of the same word sequence. One could imagine an
extension of this approach that treats arcs as features, but also includes raw n-gram features,
and updates arcs in the graph with respect to all relevant features. In such a way, the benefits
of this approach could be achieved while also gaining generalization to other pronunciations
of the same n-gram.

8.2.3 Parameter Estimation
The final component to the general framework is the parameter estimation algorithm, for
choosing a parameter weight vector α ∈ Rd . Here any technique that has been used for log
linear modeling in other domains can be used, with the proviso that the method must scale to
very large problems. Language modeling for LVCSR is typically most effective with a large
number of candidates (at least in the hundreds) and a very large number of features (in the
millions). This means that there have been limited uses of resource intensive methods such as
Support Vector Machines (SVMs) (though see section 8.3.3 for one example using SVMs).

Before getting into specific training objectives, it is probably worth spending a little time
to address a potential confusion of terminology. In language modeling, conditional models
have typically signified the conditional probabilities used via the chain rule to define the joint
probability of a string. For example, a standard trigram model is defined as the probability of
a word conditioned on the previous two words. In the current context, however, conditional
models do not denote the local conditional probabilities that are used to define the joint
generative probability, but rather denote the likelihood of the string given the input utterance.
This sort of conditional model is discriminative.

Given the popularity of Maximum Mutual Information Estimation (MMIE) for acoustic
modeling (Bahl et al. 1986), which has a conditional likelihood objective in the sense we are
using here, direct applications of such techniques have been pursued for language modeling.
As in prior work of Stolcke and Weintraub (1998), Chueh et al. (2005) examines a log linear
model which maximizes an unregularized conditional likelihood objective. Linguistic (n-
gram) features of the model are combined with a baseline acoustic model score, which can
be thought of as just another feature in the model. If ȳref

i is the reference output for speech
input x̄i , then the conditional log likelihood of the training data of m utterances given a
feature mapping ψ and parameter vector α is

LogLike(α) =
m∑

i=1

log P(ȳref
i | x̄i)

=
m∑

i=1

log
(

exp(ψ(x̄i , ȳref
i ) · α)

∑
ȳ∈GEN(x̄i)

exp(ψ(x̄i , ȳ) · α)

)

=
m∑

i=1

(
ψ(x̄i , ȳref

i ) · α − log
∑

ȳ∈GEN(x̄i )

exp(ψ(x̄i , ȳ) · α)

)
. (8.2)
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This is a convex function, and hence the α that maximizes the log likelihood can be found
through standard techniques relying on the gradient (see below).

One key problem with this approach is overtraining, which, as usual with language
modeling, is severe and has led to little or no system gain for approaches pursuing it as
presented above (Chueh et al. 2005; Stolcke and Weintraub 1998). With millions of features,
the opportunity for overtraining is much greater for language modeling than for acoustic
modeling, hence some method for controlling for overtraining (regularization) needs to be
added to the training approach in order to improve generalization to new data. Of course,
the reasons why these models provided little or no gain in system performance may also
be related to some of the issues in training data preparation presented in section 8.2.1, but
certainly lack of regularization also contributed. Similar lack of system improvement was
observed in Paciorek and Rosenfeld (2000) when using Minimum Classification Error (MCE)
training (Juang et al. 1997) for language model training, as well as in (Kuo and Chen 2005)
when using Minimum Word Error (MWE) training (Povey and Woodland 2002). Direct
application of popular acoustic model training approaches have thus not been successful,
and a large reason for this is almost certainly lack of appropriate model regularization.

Adopting regularization techniques from other sequence modeling work making use of
global conditional likelihood optimization (Johnson et al. 1999; Lafferty et al. 2001), the
regularized objective in Roark et al. (2007, 2004) becomes:

RegLogLike(α) =
m∑

i=1

(
ψ(x̄i, ȳref

i ) · α − log
∑

ȳ∈GEN(x̄i)

exp(ψ(x̄i , ȳ) · α) − ‖ α ‖2

2σ 2

)
,

(8.3)

which is the common zero-mean Gaussian regularizer that imposes a penalty within the
objective as the magnitude of the parameter values grow. This is also a convex function, thus
guaranteeing convergence to the globally optimal solution. The derivative of this function
with respect to any given parameter αk is

∂ RegLogLike(α)

∂αk
=

m∑

i=1

(
ψk(x̄i , ȳref

i ) −
∑

ȳ∈GEN(x̄i )

P(ȳ | x̄i)ψk(x̄i , ȳ)

)
− αk

σ 2 . (8.4)

The empirical results in Roark et al. (2007, 2004) validate that the unregularized global
conditional likelihood objective in Equation (8.2) did not lead to any system improve-
ments, while the regularized objective in Equation (8.3) does provide statistically significant
improvements over the baseline, using an empirically chosen regularization parameter σ .
The gradients of the n-gram features in that work were efficiently extracted from large
word lattices using general finite-state techniques, which enabled the approach to be scaled
up to over 10 million features, using lattices encoding a very large number of candidate
transcriptions, for a training corpus consisting of hundreds of hours of speech.

Another technique adopted from the recent machine learning literature is the averaged
Perceptron (Collins 2002; Freund and Schapire 1999), which was shown to provide signif-
icant word-error rate reductions over a baseline LVCSR system in Roark et al. (2004) and
was later compared with global conditional likelihood optimization in Roark et al. (2007,
2004). The reader is referred to the cited papers for a formal presentation of the algorithm.
Informally, this is an on-line algorithm that initializes parameters at zero and updates the
parameters after every example as follows: using the current model, find the best scoring
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candidate of the current example (ȳmax
i ); then update the parameters by penalizing features

extracted from ȳmax
i and rewarding features extracted from ȳref

i , the gold standard. Thus, the
parameter update at example (x̄i , ȳref

i ), in its simplest form, is

α[i] = α[i − 1] + ψ(x̄i , ȳref
i ) − ψ

(
x̄i, arg max

ȳ∈GEN(x̄i )
ψ(x̄i , ȳ) · α[i − 1]

)
, (8.5)

where α[i − 1] is the parameter vector from the previous time step4. Of course, if ȳref
i =

arg maxȳ∈GEN(x̄i ) ψ(x̄i , ȳ) · α[i − 1], then the parameters are unchanged.
Like the conditional likelihood optimization, this approach is prone to overtraining,

hence requires some regularization. The most common technique used for these models is
averaging the parameters over the models at every timestep of the algorithm. The averaged
parameter avgi (αk) at time i is defined as

avgi (αk) = 1
i

i∑

j=1

αk[j ]. (8.6)

The raw parameter values are used while training the model, but this averaged parameter
value is then used for evaluating the model on held aside or test data. Typically, some held-
aside data is evaluated after every iteration over the training data, to determine when to stop
training.

One benefit of Perceptron training versus regularized conditional likelihood optimization
is that the Perceptron training typically arrives at a more parsimonious solution, i.e. the
number of features with non-zero parameter weights are fewer, at least with commonly used
regularizers. The reason for this is clear – parameters can only be updated in the Perceptron
algorithm if the feature is extracted from either the gold standard candidate ȳref

i or the best
scoring candidate ȳmax

i , hence many features never move away from their initial values of
zero. In the comparisons between Perceptron and conditional likelihood optimization in
Roark et al. (2007, 2004), the conditional likelihood estimation resulted in larger gains over
the baseline than the Perceptron estimation, but the Perceptron was useful as an initial step
prior to the conditional likelihood optimization, both for initializing parameter weights for
fast convergence and for selecting features to include in the model.

Recent work has looked at improving on Perceptron language model training by intro-
ducing loss-sensitivity to the on-line parameter update in Equation (8.5). In the approach
of Singh-Miller and Collins (2007), the contribution of an example to the change in the
parameter values is based on a loss value, which in the cited paper is taken as the number of
errors beyond the minimum error rate hypotheses in the n-best lists. Features extracted from
highly errorful hypotheses will be more heavily penalized. In addition, this approach provides
a well-motivated way of dealing with multiple candidates with the same minimum error rate
in the set of candidates. The previously discussed (section 8.2.2) work in Kuo et al. (2007)
also uses an on-line parameter estimation approach related to the Perceptron algorithm, where
the magnitude of the parameter value update is determined via a sigmoid function.

While the above-mentioned parameter estimation techniques make use of well behaved
(convex) functions, the objectives are not precisely what is typically evaluated, which is

4The algorithm may perform multiple passes over the training data, so the index i may indicate the number of
updates, rather than the absolute example number in the corpus.
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word-error rate (WER): the number of insertions, deletions or substitutions per 100 words
of reference text. The global conditional likelihood approach is maximizing the (regularized)
conditional likelihood of the gold standard; and the Perceptron is optimizing the string
error rate rather than the WER. MWE training (Povey and Woodland 2002) optimizes a
continuous function more closely related to error rate than either of these two objective
functions, so perhaps a regularized version of that would be worth investigating. Others
have tried methods of optimizing the WER function directly, which cannot be done with
any guarantees of convergence or finding a global optimum. For example, minimum sample
risk training (Gao et al. 2005) performs a greedy search of parameterizations by performing
a line search along each dimension in sequence. Although no guarantees are given for finding
an optimal solution, reported empirical results (Gao et al. 2005) are competitive with other
methods such as Boosting and the averaged Perceptron. Similarly unguaranteed parameter
search techniques were used in Banerjee et al. (2003) to update bigram parameter weights
for word-error reduction.

We have presented a basic, general characterization of how these sorts of problems
can be approached, and have pointed to specific papers pursuing specific versions of this
general approach. Some of these have achieved relatively large improvements (more than 1%
absolute) over baseline LVCSR systems, using just n-gram features. In the following section,
we will survey some extensions to the basic approach, in three key directions: novel features;
novel objective functions; and within the context of domain adaptation.

8.3 Further Developments

8.3.1 Novel Features

Up to now, we have discussed models that rely on n-grams as features alongside the baseline
model score, or treat arcs within a decoding graph as features, e.g. Kuo et al. (2007). In
this section, we point to three relatively recent papers that look to expand upon these simple
feature sets to achieve additional discrimination. Note that this sort of enterprise has been
notoriously difficult in generative language modeling for LVCSR, where WER reductions
due to features other than n-grams have been hard to come by.

Syntactic language models have been a topic of some interest over the past decade, with
some notable successes in achieving WER reductions, e.g. Charniak (2001); Chelba and
Jelinek (2000); Roark (2001); Wang et al. (2003). In these works, generative context-free
(Charniak 2001; Chelba and Jelinek 2000; Roark 2001) or finite-state (Wang et al. 2003)
models are used to define a distribution over strings that can be used as a language model.
Within a discriminative language modeling framework, however, Collins et al. (2005) used
a generative context-free parsing model not to derive a score, but rather to derive a syntactic
annotation which was then used within the feature mapping ψ for discriminative modeling
with the Perceptron algorithm. Example features included part-of-speech (POS) and shallow
parse sub-sequence features; context-free rule instances in the parses; and bilexical head-
to-head dependencies. This stands in marked contrast to the generative models, where the
generative model scores were used for modeling and the structural annotations were an
unused byproduct. The WER reductions in Collins et al. (2005) were statistically significant
(though modest) versus just using n-gram features, and most of the reduction was achieved
with POS-tag sequence features.
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A similar approach was taken for incorporating morphological features into language
models in Czech (Shafran and Hall 2006). Unlike generative morphology-based language
models, which have been used profitably in, for example, Arabic speech recognition
(Vergyri et al. 2004), the use of the kinds of sub-word features that morphological analysis
affords does not necessitate complicated smoothing techniques. Rather, the annotations from
morphological analyzers can be used within the feature mapping to provide additional
features in the model. This is particularly important in highly inflected or agglutinative
languages, and promises substantial improvements in such languages, as demonstrated in
Shafran and Hall (2006).

One key issue in discriminative syntactic and morphological language modeling
approaches is feature selection. Features can be derived from rich structural annotations in
many ways, which can lead to an astronomical number of potential features in the model.
Features were selected in Shafran and Hall (2006) via a χ2 statistic derived from the co-
occurrence of features and the classes of interest, in this case ‘correct’ and ‘incorrect’
candidates. A large χ2 statistic indicates a high correlation between a feature and either the
set of correct candidates or the set of incorrect candidates, hence indicating that the feature
would have high discriminative utility.

Trigger features (Lau et al. 1993) are a way of capturing the bursty and topical nature
of language – if a word is observed, then there is typically a high likelihood of that word
occurring again or related words occurring. A self-trigger is a feature that exploits an
instance of a word or term to increase the likelihood of observing another, or in the case
of discriminative models, to reward candidates that have the triggered term. In Singh-Miller
and Collins (2007), self-triggers of various sorts were used within a loss-sensitive Perceptron
modeling framework to reduce WER significantly over using just n-gram features. To do
so, they define a history h of previous utterances in the conversation, and derive trigger
features based on unigrams and bigrams that either a) occur multiple times in the candidate
transcription; or b) occur in the candidate transcription and in transcriptions in the history h.
In addition, they create backoff bins of unigrams and bigrams based on TF-IDF statistics, and
derive another set of features based on these bins, as a way of tying the parameters for words
that are similarly distributed. The combination of raw and binned trigger features, along with
standard n-gram features, resulted in the best performing system.

Real gains are being achieved by expanding the feature set beyond simple n-gram features,
and the discriminative language modeling paradigm that we have been presenting is a natural
framework for work on novel methods for feature extraction and selection.

8.3.2 Novel Objectives

While most research in LVCSR over the years has focused on WER as an objective,
it is increasingly becoming the case that speech recognition is a sub-process within a
larger application such as call-routing, spoken language understanding or spoken document
retrieval. Within such a scenario, discriminative language modeling approaches can be
applied with a downstream objective function in training rather than an objective function
based on the accuracy of the speech recognition itself. This sort of optimization can occur
within the context of generative language model estimation, as with the spoken language
understanding applications in Goel (2004); Goel et al. (2005), in which bigram probabilities
were iteratively re-estimated to improve utterance annotation (Goel 2004) or call-routing
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(Goel et al. 2005) performance. Discriminative language modeling methods, however, allow
for great flexibility of feature mapping along with direct optimization of such an objective.

In Saraclar and Roark (2005, 2006), utterances within a call-routing application were
annotated with class labels (97 classes), and discriminative language model estimation
was done using either the Perceptron algorithm (Saraclar and Roark 2005) or regularized
global conditional likelihood maximization (Saraclar and Roark 2006) for various objective
functions: a WER objective; an utterance class error rate (CER) objective; and a joint
WER/CER objective. Features included n-grams, class labels, and combination class label
and n-gram. Optimization of the joint objective led to a very slight (not statistically
significant) increase of CER versus training with an exclusively CER objective, but no
increase in WER was observed versus training with an exclusively WER objective. That is,
the trade-off inherent in a joint optimization came at the expense of CER rather than WER,
which is unsurprising given that each utterance consists of many words but receives just one
class label. Inclusion of the utterance class in the model achieved modest (though statistically
significant) improvements in WER versus just n-gram features, hence this can also be seen
as a method for increasing the feature set.

Given the growing interest in machine translation (MT) of speech, one might expect future
work in pushing MT objective functions back into LVCSR model training, and discriminative
language modeling of the sort described here is one way to achieve this. For example, the
presence or absence of phrases from a phrase table within a phrase-based MT system may
impact the final quality of translation, hence optimizing the LVCSR system to do a better job
of recognizing such phrases, perhaps at the expense of overall WER, which may result in an
overall system improvement. Similar approaches could be pushed in speech IR or other areas Q64
of spoken language understanding. Other than the papers discussed here, we are unaware of
any published results in this direction.

8.3.3 Domain Adaptation

All of the work discussed up to now has been within the context of in-domain trained systems,
but language model adaptation to novel domains is an area of great interest where they have
also been shown to have utility. An adaptation scenario does change a couple of key aspects
of the training that impact the best practices. First, to the extent that the new domain is not
part of the baseline training data (which is the whole point of domain adaptation) then the
issue of cross validating the training set to get training data is moot. However, there remains
the issue of the reference transcription not being in the lattice output of the recognizer.
In fact, the oracle accuracy of the lattice, i.e. the best possible accuracy achievable from
among the candidates, will likely be low for the novel domain, which can reduce the efficacy
of these discriminative approaches, relative to generative alternatives such as Maximum a
Posteriori (MAP) adaptation (Bacchiani et al. 2006; Gauvain and Lee 1994).

In Bacchiani et al. (2004), a large vocabulary general voicemail transcription system was
adapted for customer service support voicemail recognition. The baseline out-of-domain
training of roughly 100 hours was augmented with 17 hours of in-domain training data.
In a straight head-to-head comparison, MAP adaptation of the generative language model,
based on counts derived from the in-domain data, led to significantly larger improvements
in transcription accuracy over the baseline (nearly 8% absolute) than using the Perceptron
algorithm (5% absolute). Note that the vocabulary was kept constant in this application, so the
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MAP adaptation did not benefit from additional in-domain vocabulary. The hypothesis was
that the re-ranking nature of the Perceptron was hurting it, since the MAP adapted generative
model was used in the first pass, hence could find good candidate transcriptions that were not
in the word lattices produced by the baseline out-of-domain trained recognizer.

To remedy this, a hybrid of MAP adaptation followed by Perceptron reranking was
pursued in Bacchiani et al. (2004). Of course, once the in-domain data was included in
the baseline LVCSR training data, appropriate cross-validation techniques had to be used to
produce training lattices for the discriminative language model. The result of this approach
was an additional 0.7% absolute improvement versus using MAP adaptation alone.

In Zhou et al. (2006), several discriminative training algorithms were compared for
domain adaptation in Chinese LVCSR, including the Perceptron algorithm, boosting
(Schapire et al. 1998), ranking SVMs (Joachims 2002) and minimum sample risk (Gao et al.
2005, see section 8.2.3). They found the Perceptron algorithm provided the best domain
adaptation (by more than 1% absolute), which they attributed to the large size of the feature
set chosen by the Perceptron algorithm relative to the other methods investigated. In addition,
they found that the ranking SVM took two orders of magnitude more training time than the
other methods.

What remain unexplored are semi-supervised adaptation techniques for this problem –
making use of in-domain text without recordings or recordings without transcriptions to
adapt language models using discriminative parameter estimation techniques. The flexibility
of generative adaptation approaches, such as MAP estimation, permits the opportunistic
exploitation of available resources for model training. Achieving such flexibility within
discriminative language modeling approaches is an important topic that deserves further
attention.

8.4 Summary and Discussion

In this chapter, we have presented a general discriminative modeling framework and its appli-
cation to language modeling for LVCSR. Nearly all of the work on discriminative language
modeling fits this general characterization, and it is useful for defining the dimensions within
which approaches differ. We have made an effort to be comprehensive in the survey, within
the scope declared at the outset of the chapter. Overall the number of papers that have been
written on this topic are relatively few, which can be attributed to a number of factors.

First, there are significant barriers to entry in researching this topic. Unlike other
application areas, such as machine translation, achieving state-of-the-art performance in
LVCSR is not accessible to researchers outside of a small number of research labs and
centers. The number of techniques that must be combined within a full-blown LVCSR
system to achieve this performance – including a range of acoustic modeling techniques in
multiple stages, first-pass large vocabulary decoding, speaker adaptation and lattice rescoring
techniques – are such that a researcher must expect a major time investment to even produce
the training data needed to explore discriminative language modeling. What should be a
priority within the speech community is to lower these barriers by making a large amount
of training and evaluation word lattices available for research purposes to the community at
large. That would almost certainly spur researchers in machine learning and NLP to begin
applying their work in this domain.
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136 AUTOMATIC SPEECH AND SPEAKER RECOGNITION

It used to be the case that perplexity reduction was the primary mode for evaluating
language model improvements. Given the poor correlation between reductions in perplexity
and WER reduction, this is no longer widely accepted as a language modeling objective.
It did have the virtue, however, of allowing evaluation on text corpora, which meant that
research on language modeling could be conducted without access to LVCSR systems. For
the discriminative models presented here, this is no longer the case: LVCSR systems are
required for training data, and WER is the objective – perplexity cannot be calculated from
these models. One step towards increasing research on language modeling would be to make
word lattices from competitive LVCSR systems available to the community at large.

Even if such data were made available, however, this remains a very large and difficult
problem. Scaling up machine learning algorithms to handle problem spaces with many
millions of dimensions and training sets with millions or billions of examples (or more)
is a challenge. There is a reason for discussing finite-state methods in this survey, and that
is the scale of the problem. Coupled with the widespread perception that language modeling
for LVCSR is hopeless, these challenges present another kind of barrier to entry.

This is a shame, because there has been progress in language modeling in this direction,
and there remain a large number of very interesting and relatively unexplored directions in
which to take it, such as the topics in the following short list:

• Semi-supervised techniques for leveraging large text corpora alongside the kind of
training data we have been discussing;

• Further research on richer feature sets, such as syntactic features or hybrid acous-
tic/language features;

• Feature selection and/or dimensionality reduction;

• Scaling up compute intensive parameter estimation techniques.

This survey suggests that it is not unreasonable to foster the hope that real LVCSR system
improvements can and will be achieved along these lines over the next decade, to the point
where resulting techniques will become part of the collective best practices in the field.
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