
Designing Antimicrobial Peptides with Weighted Finite-State
Transducers

Christopher Whelan, Brian Roark, and Kemal Sönmez

Abstract— The design of novel antimicrobial peptides (AMPs)
is an important problem given the rise of drug-resistant
bacteria. However, the large size of the sequence search space,
combined with the time required to experimentally test or
simulate AMPs at the molecular level makes computational
approaches based on sequence analysis attractive. We propose
a method for designing novel AMPs based on learning from
n-gram counts of classes of amino acid residues, and then
using weighted finite-state machines to produce sequences that
incorporate those features that are strongly associated with
AMP sequences. Finite-state machines are able to generate
sequences that include desired n-gram features. We use this
approach to generate candidate novel AMPs, which we test
using third-party prediction servers. We demonstrate that our
framework is capable of producing large numbers of novel
peptide sequences that share features with known antimicrobial
peptides.

I. INTRODUCTION

Antimicrobial peptides (AMPs) have attracted consider-
able attention as a potential new source of therapeutic
agents effective against microorganisms that have developed
resistance to traditional drugs [1]. However, the size of the
search space makes it difficult to discover new AMPs through
experimental testing; for a typical AMP sequence of length
30, there are 2030 ≈ 1039 possible sequences. Fortunately,
researchers have recently published several databases of
AMPs, such as ADP2 [2] and CAMP [3], allowing the
creation of large data sets for the computational analysis of
AMPs. This analysis can be used to learn patterns in AMP
sequences, which we can then use to design novel AMPs.
For example, Wang et al. [2] used the distribution of amino
acids and the most common motifs in the ADP2 database
to design a peptide that exhibited strong activity against E.
Coli. In a linguistically inspired approach, Loose et al. [4]
used a data set of known AMP sequences to learn a set of
regular grammars, and then used those grammars to generate
novel peptides.

We propose a method for designing novel AMPs based
on learning from n-gram counts of classes of amino acid
residues, and then using weighted finite-state transducers
to produce sequences that include those features that are
strongly associated with AMPs. Feature mappings based
on n-gram counts can be thought of as a representation
of a sequence in the frequency domain, and have been
used successfully in tasks such as protein remote homology
detection [5], the problem of detecting similarities between

Christopher Whelan, Brian Roark, and Kemal Sönmez are with the
Division of Biomedical Computer Science and Center for Spoken Language
Understanding, Oregon Health & Science University, Portland, OR, USA.
whelanch@ohsu.edu

proteins from different organisms. In our application, we
attempt to learn a set of weights that describe how each
n-gram feature is associated with antimicrobial activity, and
then use those weights to generate new sequences. The latter
task is made difficult, however, by the fact that most vectors
of n-gram feature counts do not represent valid peptide
sequences. For example, a feature vector that has a positive
count for a trigram feature must also have positive counts
for the bigrams and unigrams contained within the trigram;
otherwise, it cannot represent a valid sequence. If the weight
associated with the trigram feature is high, but the weight
associated with the bigram features is low or negative, one
cannot simply increase the count of the trigram feature while
decreasing the count of the bigram features. Weighted finite-
state transducers (WFSTs) are a potential solution for this
problem in sequence design. Commonly used in speech
recognition and natural language processing [6], they can
be used to build a weighted lattice of sequences that can be
searched or sampled using efficient algorithms to yield valid
sequences rich in a desired set of n-gram features.

The method we present here is not specific to AMPs and
could be applied to many problems in peptide design. We
originally developed this framework for a different problem:
the creation of peptides capable of binding to inorganic mate-
rials such as metals, which is an area with many applications
in advanced materials science and nanotechnology [7]. We
were able to adapt the framework that we developed for that
task to the problem of AMP design with minimal changes.
This demonstrates the general applicability of our approach.

II. METHODS

A. Creating a data set

We downloaded all experimentally verified AMPs from
the CAMP database as of March 8, 2010, yielding a set of
1,187 peptide sequences. After removing all sequences that
contained the nonstandard amino acid letters B, X, and Z,
and then extracting representative sequences using the CD-
HIT clustering server [8] with a sequence identity parameter
of 0.9, we were left with a data set of 862 AMP sequences,
with a mean length of 34 amino acid residues and a median
length of 30. It is difficult to create a negative training set of
experimentally verified non-AMPs, so we followed Thomas
et al. [3] in noting that AMPs are generally secreted from
cells, and downloaded a set of human protein sequences from
the UniProt database that were between twenty and fifty
amino acids in length, not annotated as antimicrobial, and not
annotated as secreted. This gave us a set of 1,224 negative



Fig. 1. An example of how we map peptide sequences to features. The
substring DWP contributes to the count of the trigram feature f 3, which
represents subsequences of classes “Acidic, Aromatic, Cyclic”.

training examples. We randomly split the data, putting 70%
in a training set and 30% in a test set.

B. Mapping to a feature space and building a support vector
machine classifier

To build a feature space and classifier for AMPs, we define
a set of 13 classes to represent the chemical properties of
amino acid residues: acidic, cyclic, aliphatic, aromatic, basic,
buried, charged, hydrophobic, large, medium, small, non-
neutral, and polar. We define unigram, bigram, and trigram
features to be the ordered set of classes contained in a
subsequence of one, two, or three amino acids. For any
sequence, we count the number of times each feature appears,
as shown in Figure 1. Given a set of training examples of
known AMPs and non-AMPs, we compute vectors of feature
counts and train a support vector machine (SVM) using the
SVMLight package [9] V6.02. Training an SVM produces a
linear classifier in the feature space, defined by

wT
φ(x)+b,

where φ(x) is the mapping of a sequence to the feature space
and w is a weight vector that describes the decision boundary
hyperplane in the feature space. Given this model, from our
trained SVM we extract w, which indicates the direction
in the frequency feature space that we hypothesize contain
sequences that are more likely to be AMPs.

C. Constructing a WFST to generate novel sequences

A weighted finite-state transducer is an automaton in
which each transition between states is associated with an
input symbol, an output symbol, and a weight. Formally,
they are defined as 8-tuples (Σ,∆,Q, I,F,E,λ ,ρ), where Σ is
an input alphabet, ∆ is an output alphabet, Q is a finite set of
states, I is the set of initial states, F is the set of final states, E
is the set of transitions between states, λ is a weight function
for initial states, and ρ is a weight function for final states.
The input and output alphabets are augmented with a symbol
ε which represents the empty string, allowing transitions to
not input or output a symbol. If no outputs are associated
with the transitions then the machine is referred to as a
weighted finite-state acceptor (WFSA). Examples of WFSTs
and WFSAs can be seen in Figure 2. An important operation
on WFSTs is composition, denoted by ◦. In composition,
the outputs of one WFST are fed to the inputs of a second
WFST or WFSA. Efficient implementations of composition
allow the construction of complex models based on a set of
simple machines [10].

We use WFSTs to generate novel peptide sequences that
will score well according to the weight vector learned by
our classifier. Our sequence generation system is constructed
from three finite-state machines that are composed together.
Our first machine, F , is an unweighted transducer that
maps from a sequence of amino acids to a sequence of
tokens representing features, as shown in Figure 2(a). Our
second machine, S , is a WFSA that provides a score for
a given sequence of features. This machine is built using
the weight vector from the SVM classifier, and accepts each
feature with the cost assigned to it by the classifier (Figure
2(b)). Each arc accepts a single feature token fi with a
weight equal to λwi, where wi is the value of the classifier
weight vector for that feature and λ is a parameter set
when building the model. After applying a weight pushing
algorithm and normalizing, the weights within the machine
are treated as log probabilities; therefore, the parameter λ

can be used to vary the “peakedness” of the probability
distribution over generated strings because λ logwi = logwλ

i .
The third machine, T , is a simple transducer that accepts and
outputs any sequence of length 30; this machine constrains
the length of our generated sequences. We use a value of 30
because it is the median length of our positive training set.

We build our final machine by composing the three sub-
machines:

T ◦F ◦S

This produces a WFST that accepts amino acid sequences of
length 30 with a score given by summing up the individual
weights of every feature contained within the sequence times
λ . We then determinize the paths through this transducer and
normalize the scores of each path. We build our finite-state
machines using the open source OpenFST library, version
1.1 [11]. In addition to implementing the algorithms needed
to produce the transducer as described above, OpenFST pro-
vides tools that can search for the highest scoring sequences
accepted by the machine, and can sample from high-scoring
sequences probabilistically, by treating the scores of each
transition within the machine as a negative log probability.
Random sampling adds diversity to our results, since the
highest scoring sequences generated by the model are often
permutations of the same motifs.

D. Generation of novel peptides

We created five sets of novel peptides for testing, each
of which consisted of 2,000 novel peptide sequences of
length 30. The first, RAND, was a control set, consisting of
amino acid residues chosen randomly at each position. As a
second control, we also created a set AADIST, which was
generated by setting each amino acid independently based on
the distribution of amino acids in the CAMP database. We
then sampled from our WFST to build three sets WFST1,
WFST2, and WFSTNEG, with the λ peakedness parameter
set to 1, 2, and -1, respectively. The group WFSTNEG exists
to demonstrate the ability of the method to solve the inverse
design problem: creating sequences which are unlikely to be



CW

CWV-f-1
V:ε

CWR-f-1

R:ε

CWV-f-2
ε:f3

CWV-f-3
ε:f6

CWV-f-4
ε:f8

WV
ε:ε

CWR-f-2
ε:f5

CWR-f-3
ε:f7

CWR-f-4
ε:f9

WR
ε:ε

(a) Feature Machine

0

f1/-4.401e-05

f2/-0.00479

f3/0.00515

f4/-0.00492

f5/0.00492

(b) Scorer

Fig. 2. Portions of the finite-state machines that generate new sequences. 2(a): A portion of the finite-state transducer that computes the list of features
contained in a sequence, showing paths that can be taken from the state that represents a trigram history of “CW”. In one path the machine accepts the
amino acid ’V’ as input, and emits the features f 3, f 6, and f 8, before proceeding to the state that indicates that the history is now “WV”. On the other
path the machine accepts the amino acid ’R’, and emits the features f 5, f 7, and f 9. The symbol ε represents the empty string. 2(b): A finite-state acceptor
that assigns scores to features.

AMPs. For each of our WFST generated groups, we verified
that no sequences shared more than 0.9 sequence identity
using the CD-HIT clustering web service [8].

E. Evaluating designed AMPs

To evaluate the novel AMP sequences produced by our
system, we used the prediction server provided by the
CAMP database website [3]. Although not a substitute for
experimental validation, using a computational prediction
technique allows rapid testing of large sets of peptides,
and is therefore useful in validating our approach. The
CAMP server classifies peptide sequences as AMPs using
three methods: SVMs, random forests (RF), and discriminant
analysis (DA). These classifiers were shown to have good
performance on a test data set, with overall accuracies of
91.5%, 93.2%, and 87.5%, respectively. The CAMP pre-
dictors use a feature set composed of a variety of features
including amino acid composition, average hydrophobicity
and hydrophilicity of the peptide, transition and composition
of groups based on reduced amino acid alphabets, and di- and
tri-peptide composition based on hydrophobicity. Therefore,
there is partial but not complete overlap with the feature
set used in our SVM classifier and WFSTs. Even though
this overlap may make it easier for our method to produce
sequences that CAMP classifies as AMPs, we believe that
the construction of sequences that score highly in a third-
party classification system is a valuable demonstration of
our approach.

III. RESULTS

A. Performance of the SVM classifier

We began testing our system by evaluating the SVM clas-
sifier against our held-out training set of 259 positive and 367
negative examples. Our classifier had an area under the ROC
curve of 0.931. This indicates that our feature set of n-gram
counts of amino acid classes provides sufficient information
to train an SVM classifier with strong performance.

N
u
m

b
e
r 

o
f 
P

o
s
it
iv

e
 P

re
d
ic

ti
o
n
s

0

500

1000

1500

2000

RAND AADIST WFST1 WFST2 WFSTNEG

Classifier

SVM

RF

DA

Fig. 3. Number of sequences in a sample of 2000 predicted to be
AMPs for different sequence generation methods. A value of 2000 indicates
that all of the generated sequences were predicted to be AMPs; a score
of 0 indicates that none were predicted to be AMPs. RAND: Sequences
generated completely randomly. AADIST: Sequences generated according to
the distribution of amino acids in the CAMP database. WFST1: Sequences
generated using a WFST with a peakedness parameter λ = 1. WFST2:
Sequences generated using a WFST with λ = 2. WFSTNEG: Sequences
generated using a WFST with λ = -1. Results are shown for all three
prediction methods available at the CAMP database server: SVM: support
vector machine. RF: Random Forest. DA: Discriminant Analysis.

B. Number of predicted AMPs in generated sequences

We then determined the number of sequences predicted
to be AMPs in our control and test groups using the
CAMP prediction servers. The results are shown in Figure 3.
Averaged across the three prediction measures, only 3.9% of
the random control group were predicted to be AMPs, while
59.6% of the AADIST control set had positive predictions. In
the WFST1 group, an average of 84.9% were predicted to be



TABLE I
HIGHEST AND LOWEST SCORING FEATURES IN THE MODEL

Feature Weight
Cysteine 0.428
Isoleucine 0.279
Lysine 0.246
Aromatic-Buried-Small 0.169
Medium-Medium-Aromatic 0.159
Threonine -0.323
Leucine -0.356
Serine -0.380

AMPs. In the group created with a more peaked probability
distribution over sequences, WFST2, an average of 99.9% of
the generated sequences were predicted to be AMPs. Finally,
in the WFSTNEG group, in which the value of the weights
was reversed to reward non-AMP features, only 0.48% of
the generated sequences were predicted to be AMPs.

C. Extracting highly weighted features from the model

To better understand the predictions made by our model,
we extracted the features with the highest and lowest weights.
The five highest and three lowest weighted features are
shown in Table I. Unigram features of cysteine, isoleucine,
and lysine had heavy positive weights, indicating that those
amino acids appear with much greater frequency in the set of
AMP sequences than in our negative training set. Also highly
weighted were two trigram features: the sequence of an
aromatic, a buried, and a small residue, and the sequence of
two medium sized residues followed by an aromatic residue.
The lowest weighted features were the unigrams of residues
that appeared infrequently in AMP sequences.

IV. CONCLUSIONS AND FUTURE WORK

A. Conclusions

We have shown that by using the n-gram features of
chemical classes of amino acid residues and a trained SVM
classifier, we can produce WFSTs that are capable of gen-
erating novel sequences which share the same features as
the training set. A third-party classification server predicts
that a large proportion of these novel sequences will have
antimicrobial capabilities. By varying the parameters used
to construct our machines, we can exchange diversity of the
generated sequences for a higher likelihood of generating
new AMPs. We believe that this framework is a promising
approach for novel peptide design.

B. Future Work

Although we believe that the use of third-party computa-
tional prediction servers shows that this is a promising ap-
proach, any attempt to computationally design novel AMPs
must eventually be validated by synthesizing and testing
actual proteins. We will look to do so in the future.

We believe that this framework is applicable to other prob-
lems in peptide design. As mentioned in the introduction, we
are also using it to design short peptides that have the ability
to bind to inorganic materials. Another potential application

is the design of peptides capable of binding to larger proteins,
such as G-coupled protein receptors.

We would also like to study the impacts of using different
feature mappings for sequences on the performance of the
system. Our feature mapping is closely related to string
kernel methods such as the spectrum kernel [5] and the
mismatch kernel [12], and could easily be extended to incor-
porate features of other kernels, like the gappy and wildcard
[13]. Finally, because our approach relates string kernels
and weighted finite-state transducers, it may be possible to
improve the construction of our machines using the theory
of rational kernels [14], which provides a framework for
learning kernels between strings in terms of WFSTs [15].

V. ACKNOWLEDGMENTS

This research was supported in part by NSF Grant #IIS-
0811745. Any opinions, findings, conclusions or recommen-
dations expressed in this publication are those of the authors
and do not necessarily reflect the views of the NSF.

REFERENCES

[1] H. Jenssen, P. Hamill, and R. E. W. Hancock, “Peptide antimicrobial
agents,” Clin Microbiol Rev, vol. 19, pp. 491–511, Jul 2006.

[2] G. Wang, X. Li, and Z. Wang, “APD2: the updated antimicrobial
peptide database and its application in peptide design,” Nucleic Acids
Research, vol. 37, no. Database issue, p. D933, 2009.

[3] S. Thomas, S. Karnik, R. S. Barai, V. K. Jayaraman, and S. Idicula-
Thomas, “CAMP: a useful resource for research on antimicrobial
peptides,” Nucleic Acids Research, vol. 38, pp. D774–80, Jan 2010.

[4] C. Loose, K. Jensen, I. Rigoutsos, and G. Stephanopoulos, “A linguis-
tic model for the rational design of antimicrobial peptides,” NATURE,
vol. 443, pp. 867–9, Oct 2006.

[5] C. Leslie, E. Eskin, and W. S. Noble, “The spectrum kernel: a string
kernel for SVM protein classification,” Pac Symp Biocomput, pp. 564–
75, Jan 2002.

[6] M. Mohri, F. Pereira, and M. Riley, “Weighted finite-state transducers
in speech recognition,” Computer Speech and Language, Jan 2002.

[7] C. Tamerler and M. Sarikaya, “Molecular biomimetics: nanotechnol-
ogy and bionanotechnology using genetically engineered peptides,”
Philos Transact A Math Phys Eng Sci, vol. 367, pp. 1705–26, May
2009.

[8] Y. Huang, B. Niu, Y. Gao, L. Fu, and W. Li, “CD-HIT suite:
a web server for clustering and comparing biological sequences,”
Bioinformatics, vol. 26, pp. 680–2, Mar 2010.

[9] T. Joachims, “Making large-scale SVM learning practical,” in Ad-
vances in Kernel Methods - Support Vector Learning (B. Schlkopf,
C. Burges, and A. Smola, eds.), ch. 11, Cambridge, MA: MIT Press,
1999.

[10] F. C. N. Pereira and M. Riley, Finite-State Devices for Natural
Language Processing. Cambridge, Massachusetts: MIT Press, 1997.

[11] C. Allauzen, M. Riley, J. Schalkwyk, W. Skut, and M. Mohri,
“OpenFst: A general and efficient weighted finite-state transducer
library,” in Proceedings of the Ninth International Conference on
Implementation and Application of Automata, (CIAA 2007), vol. 4783
of Lecture Notes in Computer Science, pp. 11–23, Springer, 2007.
http://www.openfst.org.

[12] C. Leslie, E. Eskin, J. Weston, and W. Noble, “Mismatch string kernels
for SVM protein classification,” Advances in Neural Information
Processing Systems, pp. 1441–1448, 2003.

[13] C. Leslie and R. Kuang, “Fast string kernels using inexact matching
for protein sequences,” The Journal of Machine Learning Research,
vol. 5, Dec 2004.

[14] C. Cortes, P. Haffner, and M. Mohri, “Rational kernels: Theory and
algorithms,” The Journal of Machine Learning, vol. 5, pp. 1035–1062,
Aug 2004.

[15] C. Cortes, M. Mohri, and A. Rostamizadeh, “Learning sequence ker-
nels,” Proceedings of the 2008 IEEE Workshop on Machine Learning
for Signal Processing, MLSP 2008, pp. 2–8, Oct 2008.


