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ABSTRACT Significant progress has been made in the application of natu-
ral language processing (NLP) to augmentative and alternative communication
(AAC), particularly in the areas of interface design and word prediction. This
article will survey the current state-of-the-science of NLP in AAC and discuss its
future applications for the development of next generation of AAC technology.
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INTRODUCTION
Over the past three decades significant technical progress has been made in

the augmentative and alternative communication (AAC) area as it concerns
the processing of language materials for written and spoken communication.
Early in the development of AAC technologies, researchers and manufactures
utilized natural language materials for the development of word prediction
and other rate and efficiency enhancing techniques (Baletsa, Foulds, and
Crochetiere, 1976; Eulenberg, Reid, & Rahimi, 1977; Goodenough-Trepagnier,
Tarry, & Prather, 1982). This early work, as well as the integration of natural
language processing (NLP) research from other domains, has led to significant
advances in the ways that spoken and written language is processed, presented,
and used by those who rely on AAC for their communication. This article will
survey the current state-of-the-science of NLP in AAC and discuss the future
application in this area.

WHAT IS NATURAL LANGUAGE PROCESSING?
Suppose you received an email from a friend that read: “¿Quieres ir al cine

a ver esa película nueva que Jenny dijo que parecía ser muy buena?” You
realize immediately that this e-mail is not written in English. If you don’t
speak the language of the e-mail, you may want to know what the language
is, want a literal translation, or maybe want just the gist of the e-mail (do you
want to go to the movies?). The computational processes involved in this type
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of task are collectively referred to as NLP, where the
term “natural language” applies to the human language
content of what is being processed by the computer.
NLP is concerned with computer algorithms that ana-
lyze, modify, augment, or generate human language
and methods that range from assigning probabilities to
words or sequences of words (e.g., word prediction or
completion) to full-scale transformation of sentences
into new sentences (e.g., sentence simplification).

Among the many applications making core use
of NLP algorithms are automatic machine translation
from one language to another, extraction of structured
information from large language corpora, speech recog-
nition, and processing of spoken language. In AAC
applications, NLP techniques have long been used
in word prediction and optimized scanning overlays.
Other areas such as dysarthric speech recognition,
sentence simplification, context input, and brain com-
puter interfaces are being actively researched (see Fager,
Beukelman, Fried-Oken, & Jakobs, 2012 in this special
issue).

Most NLP systems process input via statistical lan-
guage models trained on observations of natural lan-
guage using machine learning techniques. For example,
word prediction and word completion models are
often developed by collecting large text corpora (often
exceeding 10 million words), then making predic-
tions based on patterns observed in those collections.
Similarly, language translation systems are frequently
trained on large collections of translations. Resulting
correspondences between phrases in one language and
those of another are discovered in such collections and
used to identify possible translations of new sentences.
Other approaches may involve using a relatively small
number of manually annotated examples, rules and/or
patterns for processing natural language input. Because
these approaches permit many possible outputs at any
point in time, sometimes the results are perceived as
being incorrect from the consumer’s point of view.
However, the overall accuracy that can be achieved is
frequently sufficient to provide real utility.

A CASE STUDY IN NLP
To better understand what components are required

and what methods are commonly used in an NLP
application, a detailed example of the process of word
completion and prediction will be provided. Word
completion and prediction are commonly used in

assistive keyboard software by providing a short list of
predictable words for selection.

The most basic algorithm for word completion relies
on a lexicon that can be searched for matching initial
letters. For example, when typing “the pi..,” the system
can search the lexicon for words starting with the letters
“pi” to retrieve and present candidates for words (e.g.,
piano, pie, piece, pistol, pity, etc.). Because the number
of words in the lexicon that match the prefix will often
exceed the number of prediction slots provided by the
interface, there must be a method for deciding which
words to present.

The first option might be to rank the candidates
by their frequency of occurrence. If the individual has
been using the system long enough, those statistics may
be available from his or her performance log. In the
absence of a large amount of individual specific obser-
vations, large text corpora are of high utility, since they
allow for calculation of word or phrase frequency over
a large sample of language. For the current example,
the five most likely words prefixed by “pi” (e.g., say:
pick, pitch, piece, picture, pitcher) would be placed in
the word prediction region of the interface.

But there is more information than just the letter
sequence “pi”—in our example, this prefix is preceded
by the word “the.” Statistical models that take into
account some number of preceding words to determine
the probability of each candidate word completion
are known as n-gram models, where the “n” indicates
the number of words that are examined. A 2-gram,
or bigram model, uses the current letter sequence and
previous word to predict the current word, a trigram
model uses the current and previous two words, a quad-
gram model uses the current and previous three words,
and so forth. These models capture extremely useful
information about observed word sequences, are sim-
ple and efficient to use, and are widely employed for
problems of this sort. Using the hypothetical bigram
model, if we re-calculate our probabilities based on
the preceding word “the,” the five that become most
likely now might include “pieces” and “pilot” instead
of “pick” and “pitch.”

Syntactic expectations in the form of part-of-speech
tags or full statistical grammar models can also be
used to determine the most likely continuations. For
example, because “the” tends to be followed by nouns
or noun modifiers, the probabilities of this subset
of the total vocabulary can be adjusted appropri-
ately. However, the additional computation and model

15 Natural Language Processing and AAC

D
ow

nl
oa

de
d 

by
 [

"U
ni

ve
rs

ity
 a

t B
uf

fa
lo

 L
ib

ra
ri

es
"]

 a
t 0

7:
21

 0
8 

M
ar

ch
 2

01
2 



complexity required to include such information often
outweighs the benefit achieved in model quality, hence
simple n-gram models of the sort described above are
the norm.

To summarize: statistical language models (most
often n-gram models), trained on language corpora
and/or from prior user1 system use, are used to rank
words within a particular context and present them
to the user as possible candidates. This application is
quite typical of NLP systems in that it makes use of
statistical models estimated from data to derive likely
information of utility for the application. While the
models and tasks differ, this data-driven paradigm is
ubiquitous.

NLP APPLICATIONS IN AAC
Keyboards

From the early days of mechanical text entry,
the statistics of language have been leveraged to
improve input efficiency. The QWERTY keyboard lay-
out, patented by Christopher Scholes in 1867, was a
rough attempt to maximize typing speed by placing
frequently co-occurring characters on opposite sides
of the keyboard, thereby promoting alternating hand
utilization. Later, August Dvorak established a set
of explicit goals (e.g., the most common characters
should appear in the home row and the most com-
mon digraphs should be the easiest to type) and used
the statistical properties of English to optimize the key
arrangement under these constraints.

Similarly, the optimization of single-selection text
input has used statistical properties of written lan-
guage to improve typing efficiency. For example, the
FITALY2 keyboard arrangement (Ichbiah, 1996) rep-
resents an early example in which the total distance
traveled between selections within a 6 × 5 grid of
keys is minimized by nearly 30% when compared
to an alphabetic layout (Higginbotham & Lesher,
2004; Judge & Friday, 2011; Lesher, Moulton, &
Higginbotham, 1998a).

Although keyboards with optimized layouts can the-
oretically improve text input rates and decrease fatigue
by minimizing net motor activity, their unfamiliarity
has prevented their widespread adoption (Baletsa et al.,
1976; Lesher et al., 1998a). Most keyboards designed
for direct selection—both within the AAC commu-
nity and in the broader mobile market—still feature
either alphabetic or QWERTY layouts. In the domain

of scanning, however, the significant gains associated
with optimizing the arrangement of the character grid
often trump the familiarity of more traditional lay-
outs. By rearranging a scanning grid from an alphabetic
arrangement to one in which the most frequent char-
acters appear in locations that are quicker to select,
communication rate gains on the order of 30 to 40%
can be achieved (Lesher et al., 1998b).

Various researchers have tried introducing an ele-
ment of on-the-fly reorganization to scanning, either
by supplementing a static grid with a short charac-
ter prediction list or by dynamically rearranging all of
the characters between each selection so as to ensure
the minimum selection cost for the most probable let-
ters. Despite the use of sophisticated n-gram models, it
appears that the cognitive load imposed by these sys-
tems render them impractical except with the slowest
of scanning rates (for a review of issues, see Lesher et al.,
1998b).

Roark, de Villiers, Gibbons, and Fried-Oken (2010)
have noted that even with dynamic reorganization, the
structural constraints of traditional scanning systems
(i.e., linear or row-column topologies) limit even their
theoretical efficiency. They have proposed an alterna-
tive, called Huffman scanning that dynamically assigns
optimal binary codes to each character after each selec-
tion. The characters are not rearranged dynamically
in this paradigm, but rather they are highlighted in-
place in correspondence with their binary codes. Even
though the cognitive loads associated with Huffman
scanning are higher than for traditional systems, the
improvement in efficiency (combined with a built-
in method for seamless error correction) has led to
faster text output rates and much lower error rates in
preliminary studies.

Given an input environment in which it is not pos-
sible to accurately choose one of 30 or more keys via
direct selection, one solution is to reduce the num-
ber of keys by placing multiple characters on each
key. As the user selects each key, ambiguity is resolved
by examining the relative probabilities of the various
possible combinations of ambiguous selections. For
example, if a user were to enter the telephone key-
pad sequence [pqrs] [abc] [ghi] [def], he or she might
have intended “rage,” but it’s more likely that “said”
was the real goal, especially if the preceding two words
were, for example, “what she.” The n-gram techniques
described previously are generally used to establish the
word probabilities used for disambiguation.

D. J. Higginbotham et al. 16
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Although ambiguous keyboards of this type gained
widespread popularity with the appearance of the
T9 text entry system for cell phones, they have a
rich history within the context of AAC (Kushler,
1998; Lesher et al., 1998a; Lesher & Moulton, 2000;
Levine, Trepagnier, Getschow, & Minneman, 1987).
It’s possible to improve the efficiency of such key-
boards by grouping characters so as to minimize sta-
tistical ambiguity, but as with FITALY-like attempts
to optimize conventional keyboard arrangements, the
public has generally chosen to instead use the more
familiar traditional groupings found on telephone
keypads.

For text entry on mobile device touchscreens,
gesture-based keyboard input has become popular with
the recent appearance of commercial entries such as
Swype and ShapeWriter. Interestingly, Nantais, Shein,
and Treviranus (1994) had long ago proposed a simi-
lar method for AAC. In keyboard gesture systems, the
user spells out the desired word on an onscreen key-
board via a continuous gesture through the letters of
the word rather than by discrete taps on individual
keys. Although a precisely executed gesture that passes
through the heart of each target letter may uniquely
identify a particular word (in a given language), there
are many words for which the gestures are indistin-
guishable (for example, the gestures for “pit” and “pot”
on a QWERTY keyboard both consist of a straight
line between “p” and “t”). More importantly, since
input speed is a primary consideration, gestures are
not meant to be precisely executed. In practice, nearly
every gesture will contain significant ambiguity. The
probability that a gesture corresponds to a given word
can be computed by correlating the gesture with the
locations of the component letters of that word, taking
into account the NLP likelihood of the word within
the current context, the mechanics of the gesture (for
example, the tendency to overshoot), and the past
history of user gestures. As described above for conven-
tional and ambiguous keyboards, it’s also possible to
improve efficiency for keyboard gesture input by rear-
ranging the keys—primarily by statistically minimizing
gesture ambiguity (as in the ATOMIK3 layout from
ShapeWriter; Kristensson & Zhai, 2007; Zhai et al.,
2009).

Although keyboard gesture systems have proven
popular on mainstream devices, it remains to be seen
how useful they will be for augmentative communi-
cation. One suspects that the execution of smooth,

continuous motions through entire words will be diffi-
cult for a significant population. However, Beukelman
and colleagues have been exploring the use of gestures
through the first two or three letters in a word as a
method of priming an n-gram word prediction sys-
tem with the prefix context of the current word, with
intriguing results (Beukelman, Schley, Ternus, & Fager,
2010; Fager, Beukelman, & Jakobs, 2010). Regardless of
the utility of gestures themselves, the idea that impre-
cise input can be corrected or disambiguated using
NLP can be applied to nearly any form of direct input.
Many of the tap-based onscreen keyboards for mobile
devices (such as SwiftKey4 and the iPhone keyboard)
now incorporate at least some degree of “sloppy input”
disambiguation. Obviously, this would be an appealing
feature for persons with impaired motor functions.

We must stretch the definition of keyboard some-
what to accommodate one final entry in this section.
In the Dasher system (Ward, Blackwell, & MacKay,
2000), characters are presented to the user in a flow-
ing, alphabetically-ordered spatial stream in which the
ease of selecting a particular letter is correlated with
its probability within the current context. The user
controls the flow of the stream using vertical mouse
movement to change the target character and hori-
zontal mouse movement to control the rate of the
flow—a dynamic that is difficult to explain, but rela-
tively easy to demonstrate.5 The advantage of Dasher
over other dynamically arranged keyboards is that the
overall alphabetic “layout” of Dasher is never changed,
only the proportional area subsumed by each charac-
ter. Additionally, the user is provided with advance
information about how to select future characters
since they are represented downstream from the cur-
rent set of characters—a kind of preview of what’s
coming. Recognizing that precise 2D mouse control
may be impossible for many potential Dasher users,
MacKay and his colleagues at Cambridge University
have suggested an impressive array of alternative input
methods, including systems designed for use with
single-dimensional sliders, one or two switches, and
eye-trackers.

Word Prediction
As perhaps the highest profile application of NLP in

augmentative communication, word prediction exists
in some form on virtually all high-tech communication
aids. In one early incarnation (Eulenberg et al., 1977),
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a frequency-tagged word list was used to suggest words
for immediate direct selection. This was followed by
more sophisticated systems using the n-gram methods
outlined above (Swiffin, Arnott, Pickering, & Newell,
1987). Nearly all commercial AAC prediction engines
now use some form of n-gram prediction. The efficacy
of n-gram word prediction in reducing the number
of selections necessary to produce a given text (i.e.,
keystroke savings) depends on the number of words
in the prediction list, the order of the n-gram, the
method of blending n-gram components, the size and
nature of the source corpus, and the nature of the
text being produced. As a general rule, however, with
a 6-item prediction list, keystroke savings from com-
mercial AAC systems fall in the 40% to 50% range
(from Higginbotham, 1992, despite the 20 years of
elapsed time, still an accurate assessment). It is clear,
however, that these values fall short of the theoretical
limits, which some researchers put somewhere between
60% and 65% (Copestake, 1997; Lesher, Moulton,
Higginbotham, and Alsofrom, 2002). A brief overview
of the use of word prediction in AAC will be provided
here; readers more interested in this topic are encour-
aged to consult the excellent survey of Garay-Vitoria
and Abascal (2006).

The efficacy of word prediction in improving com-
munication rates has been an issue of some contention.
If keystroke savings alone determined communication
rate, one would expect a 50% savings to result in a
100% increase in communication rate. Given the cog-
nitive loads associated with searching the list and the
dynamic planning associated with targeting a word pre-
diction key, however, it was generally accepted that
word prediction actually slows communication for
both direct selection (Koester and Levine, 1996) and
scanning (Koester and Levine, 1994) for most users.
However, recent work by Trnka, Yarrington, McCaw,
and McCoy (2009) suggests that with more advanced
word prediction algorithms, significant communica-
tion rate gains may be achieved. Note that other
factors, such as fatigue reduction, usability and task
demands may play significant roles in determining
whether to use word prediction (e.g., Higginbotham,
Bisantz, Sunm, Adams, & Yik, 2009).

Much of the cutting edge word prediction research
of the past few years has focused on sophisticated
prediction engines capable of supporting multiple lan-
guages. Although some of the advanced techniques
utilized in these systems are designed to explicitly

address the characteristics of European languages other
than English (e.g., the fact that they are much more
highly inflected), these methods also can improve per-
formance in English. The impressive SIBYLLE system
(Wandmacher, Antoine, Poirier, & Départe, 2008) com-
bines quadgram prediction with a sophisticated latent
semantic analysis (LSA) component to yield base-
line keystroke savings of nearly 58% for French. The
FASTY design incorporates n-grams derived from both
words and parts of speech, modulated by a rule-based
grammar engine to provide predictions in German,
Dutch, Swedish, and French (Matiasek, Baroni, and
Trost, 2002). Working on an English prediction sys-
tem, Li and Hirst (2005) have selectively biased n-
gram-predicted words that are semantically related to
recently appearing words. Combined with a novel
method to deal with proper nouns, they report an
improvement of an astonishing six percentage points
in keystroke savings over a vanilla n-gram model.

A recent focus of word prediction research has
been the use of domain-specific predictions to boost
keystroke savings, where the domain might be deter-
mined by conversational topic, geographic location,
time of day, or a host of other contextual factors. The
most obvious domain is the user’s daily language pro-
ductions. Trnka, Yarrington, McCoy, and Pennington
(2006) have shown that blending topic-specific pre-
dictions with those derived from a general purpose
corpora can provide significant gains in keystroke sav-
ings. Recent studies of genre-specific prediction have
underscored the need to properly match the domain
used for n-gram training to the type of text actually
being generated by users (Wandmacher et al., 2008).

Text input systems that exploit character probabili-
ties, such as dynamically rearranged scanning layouts,
have historically used n-gram character models to esti-
mate these probabilities, where n typically falls in the
range of three through eight. By definition, such an
approach limits the amount of context that can be uti-
lized by the system. However, if an effective word pre-
diction engine is available, it is straightforward to adapt
it to produce character likelihoods by tabulating the
probabilities of each character summed across all pre-
dicted words. When blended with traditional n-gram
character predictions to smooth the data, this tech-
nique can provide significantly more accurate estimates
of character probabilities (Lesher & Rinkus, 2002).
If word prediction is n-gram based, this approach is
roughly analogous to using n-gram character prediction

D. J. Higginbotham et al. 18
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with large values of n. However, word-based char-
acter prediction lends itself to any type of word
prediction engine, including non-n-gram methods,
opening up new possibilities for accurate character
prediction.

Information generated by word prediction engines
can be leveraged for many purposes other than tradi-
tional word prediction. For example, word probabilities
can be used to bias the choices offered by spell check-
ers, or to automatically correct minor spelling errors
outright. Prediction engines that utilize syntactic or
semantic components can similarly used for gram-
mar correction and for sense disambiguation. Widgit’s
Communicate software6 uses syntactic disambiguation
to provide the appropriate symbol when an ambiguous
word like “can” appears in a sentence. In general, prob-
ability information generated by an effective prediction
engine can be utilized in many settings in which there
is some textual ambiguity.

Speech Recognition
Automatic speech recognition (ASR) takes human

speech as input, and outputs the text of the words
that were spoken. Falling within the broader range
of human language technologies, ASR makes use of
NLP methods such as statistical language models, but
because it requires digital signal processing of the
acoustic speech signal, it is typically treated separately
from written language processing. Because of the diffi-
culties inherent in the machine recognition of natural
speech, early commercial ASR products, such as dicta-
tion software, would typically require the individual to
engage in a training regime, such as reading from a pre-
defined passage, in order to provide the system with
enough input for it to learn the idiosyncrasies of the
individual’s speech. As with other NLP applications,
advances over the past decades now enable individ-
uals without any personalized training to be able to
talk over the phone to customer service applications or
perform a voice search. To the extent that an individ-
ual’s speech patterns are atypical—due to a regional or
non-native accent or to a speech disorder—such general-
use technologies will have less utility and will require
specialized solutions.

In very broad strokes, speech recognition systems
work by using two kinds of statistical models: an acous-
tic model that measures the goodness of fit between
the acoustics and the candidate word sequence, and

a language model that measures the goodness of fit
between the candidate word sequence and the partic-
ular language being spoken. For example, if a speaker
says, “I’m okay” the recognizer will consider vari-
ous possible transcriptions, which may include the
actual intended words (hopefully), as well as things like
“I’m Mo Kay” and “Eye no gate.” Depending on the
speaker, all of these may have relatively high prob-
abilities according to the acoustic model (i.e., they
are relatively good fits to the models of how words
are pronounced). The language model serves to dis-
ambiguate between candidates that are acoustically
plausible, preferring those which are similar to what has
been “observed” in that language before. Those obser-
vations typically come from large corpora, and the
models are trained to recognize a closed vocabulary—
a word has to be explicitly included in the vocabulary
in order to be recognized. Typical vocabulary sizes in
English will be more than 10,000 words.

If speech is unimpaired, commercially available
automatic speech recognition systems can be used to
perform dictation. As mentioned above, the system
can be tuned to the individual—typically through
reading of a short text—to achieve better performance
than is possible without tuning. Most products will
also allow personalization of the language model by
uploading documents of various sorts, to provide
names, words and phrases that the individual will
likely be using. For speakers with dysarthria, however,
such approaches will prove less accurate, hence with
diminished utility as an alternative communication
approach (Beukelman et al., 2007; Fager, Beukelman,
Jakobs, & Hosom, 2010). Research continues on
improving speech recognition for dysarthric speech,
but for practical use, ASR for these individuals appears
some time off in the future.

Within a multi-modal interface, however, dysarthric
speech can provide additional information that can
yield superior AAC keystroke savings. The Speech
Supplemented Word Prediction Program (Fager et al.,
2010; Hosom, Jakobs, Baker, & Fager, 2010) is an
approach that makes use of low-intelligibility speech
along with letter selection to yield improved word
prediction.7 The system user types the first letter of
the intended word and speaks the word. The system
then performs automatic recognition of the spoken
word, constrained by the initial letter, then returns a
predicted word, which can be selected by the user,
if correct or otherwise ignored. Significant additional
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keystroke savings can be achieved with this system over
typical word prediction methods, even for subjects
with relatively low speech intelligibility levels (Fager
et al., 2010).

Processing the Context
So far, discussion has focused on processing lin-

guistic information in the forms of text and speech,
in order to improve expressive communication in
AAC. However, advances in geopositioning, image
processing, Internet availability, and computing capa-
bility offer a wide range of possibilities of intelligently
including different aspects of one’s immediate environ-
ment and social context into the content of the AAC
device. The possibility of priming a word predictor or
otherwise optimizing an AAC system with information
derived from knowledge about the communication
partner, discourse genre, conversational topic, user’s
location, and time has intrigued AAC researchers and
developers. The potential of these resources are just
being realized in the research and commercial arenas.

Mining the linguistic context

Using information about the discourse genre and
conversational topic is not only intuitively attrac-
tive, but has been actively researched within cor-
pus linguistics (Biber, Conrad, & Reppen, 1991,
1998) and NLP (Blei, Ng, & Jordan, 2003; Blitzer,
McDonald, & Pereira, 2006). A variety of discourse
genres (e.g., narrative, expository, procedural descrip-
tion) can be identified and differentiated from one
another, based on a variety of syntactic, grammat-
ical and morphological characteristics. In addition,
topical talk can be characterized by distinct con-
stellations of semantic information. AAC research
in word prediction has also investigated the impact
of discourse genre and topic on prediction effi-
ciency.

Several investigations have examined the potential
of topic priming, providing a word predictor with
topic relevant texts or transcripts (Higginbotham
et al., 2009; Lesher & Rinkus, 2002; Trnka, 2008;
Trnka et al., 2006; Trnka et al., 2009). Topic-informed
predictors have been shown to display keystroke
savings improvements over base systems, depending
on dictionary size, types of topical materials, and

experimental context (machine-simulation, human-
transcription, human-interaction) (Higginbotham,
1992; Higginbotham, Lesher, & Luo, 2008; Lesher
et al., 2002; Wandmacher & Antoine, 2007).

Utilizing web-based information

A basic problem with most topic priming techniques
is the inability of the prediction system to deal with
topic materials that aren’t pre-programmed into the
system. The ability to discuss current events, poli-
tics, entertainment, sports, and so forth, often eludes
augmented speakers because a topic-specific vocabu-
lary system is not available on their devices. Current
approaches involve uploading or programming topic
vocabulary, which is non-optimal, both in terms of
the time and effort required to input the vocabulary,
and that the vocabulary is not fully integrated into the
device’s language model.

One solution is to search and retrieve topical lan-
guage material from the Internet whenever a new
topic arises. Researchers at the University at Buffalo
and DynaVox Technologies have developed an AAC
approach that integrates the results of Internet topic
searches (both spontaneous and pre-programmed)
directly into the user’s word prediction system. In ini-
tial testing, topic searches with the experimental
Webcrawler produced a 53% keystroke savings for
topic-specific written texts, 5 percentage points above
the already robust trigram-based word predictor used
in the AAC system (Higginbotham et al., 2008). Field-
testing has resulted in further refinements of the sys-
tem and a commercial release planned for the future
(Fulcher, 2011).

Partner recognition

Recognition of the speaking partner by the AAC
device could provide a wealth of information includ-
ing a shared conversation history (topics, vocabulary),
mutual interests and personal and role-related relation-
ships. In their work with locked-in patients, Davis,
Moore, and Story (2003) provide a knowledge frame-
work for developing a partner recognition system. They
propose describing each partner according to personal
characteristics, level and knowledge of topics, percep-
tual and motor skills, conversation history and mood
(emotions expressed during last conversation), then
matching them with the user’s own profile to provide
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context relevant talk. Technologies for recognizing
faces and voices are now becoming commercially
available; however, to date, no study has empirically
demonstrated the usefulness of partner identification
in AAC.

Processing partner talk

Rather than attempting to recognize the partner’s
identity, it may be possible to use the current talk
of one’s interlocutor to inform the AAC device.
Research at the University at Buffalo has been exam-
ined the potential of partner talk for improving word
prediction.

Wisenburn and Higginbotham (2008, 2009) devel-
oped an AAC prototype (Converser) that identified the
noun phrases spoken by the communication partner
(via speech recognition) and incorporated them into
the AAC device. Modest gains in communication rate
and user preference were found for Converser com-
pared to an alphabet typing system, despite the fact
that the speech recognition accuracy was low.

Min (2012) explored the effects of partner talk
by analyzing extended transcriptions of multiple par-
ticipants engaged in a variety of social interactions.
By inputting transcripts of spoken conversations into
a word prediction emulator, the contributions of com-
munication partner talk were studied in terms of its
ability to improve word prediction. Preliminary results
support previous research on corpora of natural speak-
ers showing modest increases in keystroke savings
depending on discourse genre and word predictor vari-
ables (e.g., sophistication of the prediction algorithm).
Related work at the University at Buffalo is focused
on leveraging partner talk to optimize the predictabil-
ity of fringe vocabulary and for triggering semantically
related words.

Text simplification and summarization

Another NLP technology with significant potential,
but yet unrealized application for AAC, concerns the
automatic reconfiguration of existing text. In text sim-
plification, documents are transformed into simpler
sentence structures and vocabulary while retaining the
meaning of the original. For example, the original doc-
ument would be segmented into individual clauses,
and reconstituted into multiple sentences that are eas-
ier to understand (Original: “The plane, a twin-engined

Cessna owned by XYZ, Inc., crashed into the ocean
after striking a flock of seagulls on take-off.” Simplified:
“The plane crashed into the ocean. The plane was a
twin-engined Cessna. The plane was owned by XYZ,
Inc. The plane hit birds during take-off.”).

A related NLP technology, automatic summariza-
tion, produces short summaries of documents or col-
lections of documents. Similar to text simplification,
the aim is to produce a short, simple overview of what
is presented in a document. Automatic summarization
systems work by finding sentences in the document
that are particularly important, and then extracting the
most important sentences to include in the summary.
Returning to the previous example, the automatic sum-
mary might only include two of the four simplified
clauses: “The plane crashed into the ocean. The plane
hit birds during take-off.”

Although not currently employed in any commer-
cial AAC technologies, the potential for restructur-
ing text obtained from the Internet, e-books, e-mail,
transcribed partner speech, and so forth, is signif-
icant. Complex reading materials could be simpli-
fied for individuals with cognitive-linguistic challenges
for palatable reading and/or listening experiences.
Newspaper stories, magazine articles, web page con-
tent, e-mails, and so forth, could be processed and
inserted into the individual’s AAC system, transformed
into materials for expressive communication. Provided
with a simplified and appropriately segmented set of
topic materials, the augmented speaker could select
from these offerings to discuss current events, base-
ball scores or other topics related to their personal
lives.

Location

Knowledge about one’s location can be used to
provide important information related to one’s where-
abouts or context specific activities. This might include
location-relevant words and utterances, page organi-
zations, maps, locations of favorite places, historical
content from conversations that occurred at the same
location or in similar establishments (e.g, Starbucks,
clothing store). This information is potentially avail-
able by coordinating one’s location (e.g., via GPS) with
web-based information sources (e.g., Google maps)
and a geographic-tagged language corpus in one’s
device. Although the need and interest for location
specific vocabulary has been demonstrated, substantial
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challenges remain in utilizing location information
for AAC (Bryen, 2010; DeRuyter, McNaughton,
Caves, Bryen, & Williams, 2007).

Patel and colleagues (Dominowska, Roy, & Patel,
2002; Patel & Radhakrishnan, 2007) analyzed a
geographically-tagged corpora of 6,300 utterances
(60,794 words) and organized the vocabulary into 8 dif-
ferent location-specific topic areas (e.g., class, kitchen,
lab meeting, grocery store). Using a variety of data min-
ing strategies, they were able to organize vocabularies
in terms of frequency and semantic relatedness and
develop a proof-of-concept prototype with their Icon-
Chat AAC software. Recently, commercial developers
have introduced mobile applications that provide an
interface between the mobile device, GPS and the
kinds of information about nearby businesses that can
be used for communication purposes (e.g, MyVoice8;
Locabulary9). While providing the user with location-
relevant words and phrases, these applications do not
make use of NLP for vocabulary search, retrieval or
display.

Several challenges to location-enhanced AAC tech-
nology remain. First, how will location-relevant vocab-
ulary be identified and made available? To date, the
solution has been to provide a tailored set of vocab-
ulary items. Although a necessary first step, hand-
tailored static vocabularies may be insufficient to
address new and/or unanticipated places, events, or
circumstances encountered by the augmented speaker.
Because of the small size of the AAC industry, it is
unlikely that developers will be able to produce tai-
lored vocabularies that will be sufficiently specific and
robust to meet new and/or unanticipated situations
(Bryen, 2010). Relying on the volunteers from the AAC
user-community to provide context-specific vocabu-
lary sets is an intriguing idea, but possesses the same
problems discussed above. One solution may be to
augment tailored vocabularies using a web crawler-type
system, which would search for location-specific vocab-
ulary or query a crowd-sourced feedback system in
which utterances are compiled from other users’ com-
munications collected in similar locations and stored
in the cloud. These strategies could be further aug-
mented by structuring language materials with relevant
utterance frames using an NLP-style inference engine
that determines the current communication genre (e.g.,
transactional versus interpersonal), then provides a set
of utterances to carry out the actions associated with
the particular situation.

Time

Time (i.e., clock time, event, schedule, calendar, sea-
sons) could also be employed as contextual input for
NLP processing. The regularity of a daily schedule (e.g.,
getting dressed, meals, school/work) could be used as
input to prime a word predictor or provide content to
a communication page with vocabulary related to time
of day (e.g., provide breakfast options on a meal page).
Further benefits could be achieved by combining time
with other contextual information sources, like loca-
tion (e.g., at home versus at a restaurant). External
scheduling information, such as meetings or events
(e.g., football game or favorite television show), could
also be used to derive the regularities of talk associated
with that event. Information related to the seasons,
upcoming holidays and other specific dates could pro-
vide similar benefits by making language related to
those repeated occasions available for speaking. Recent
work by Reiter et al. (2009) has explored the pro-
cessing of student schedules with information about
their actual experiences to facilitate the production of
personal narratives.

FUTURE DIRECTIONS
From the above discussion it should be apparent

that the NLP techniques are ubiquitous with current
AAC technologies and will continue to provide impor-
tant resources for future development. One would
expect that the most dramatic NLP-influenced devel-
opment will involve integrating information about the
individuals who rely on AAC context into the device.
It is not too hard to imagine future AAC systems
that provide the resources (e.g., recordings of an indi-
vidual’s daily experience, GPS, internet searches), and
the language and discourse support (e.g., context-based
word prediction, context-sensitive syntactic frames)
that actively support extemporaneous story telling dur-
ing conversation. As noted, most of the information
sources are already available and now it is up to
the manufacturers to integrate them into their AAC
technologies.

It is likely that the future development of basic
NLP processes will incremental. Their future contri-
bution to AAC will likely be through broadening
the application of NLP into areas like spell-checking,
context-based thesaurus, and genre-based word predic-
tion. As evident in this review, the current research
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and development focus in on the NLP technology
itself—improving processing performance and apply-
ing NLP to new problems. Issues of how NLP is used
by different populations within the AAC community,
its integration and use across different interfaces and
graphic representation systems, and its ability to be
adapted to enhance communication across a variety of
activities remain topics that need to be explored in the
near future.

NOTES
1. Although the term “user” is not a preferred term in the disability com-

munity it is used widely in the literature dealing with NLP applications
and user-interface design. In this paper this term will be refer to the
“generic” person interacting with technology.

2. http://en.wikipedia.org/wiki/FITALY
3. http://www.almaden.ibm.com/u/zhai/ATOMIK.htm
4. http://www.swiftkey.net/
5. http://www.inference.phy.cam.ac.uk/dasher/
6. http://www.widgit.com/products/symwriter/index.htm
7. A video of the SSR system can be found here: http://www.youtube.

com/davinciawards#p/c/19254BCD97F0FFF8/0/bTks5CPM8Ks
8. http://myvoiceaac.com
9. http://locabulary.com

REFERENCES
Baletsa, G., Foulds, R., & Crochetiere, W. (1976). Design parameters of an

intelligent communication device. In Proceedings of the 29th Annual
Conference on Engineering in Medicine and Biology. Chevy Chase,
MD: Alliance for Engineering in Medicine and Biology.

Beukelman, D. R., Fager, S., Ball, L., & Dietz, A. (2007). AAC for adults
with acquired neurological conditions: A review. Augmentative and
Alternative Communication, 23(3), 230–242.

Beukelman, D., Schley, H., Ternus, T., & Fager, S. (2010). New AAC access
strategy: Gesture enhanced word predication. American Speech,
Language, Hearing Association, 2010 Convention, Philadelphia, PA.

Biber, D. (1991). Variation across speech and writing. Cambridge:
Cambridge University Press.

Biber, D., Conrad, S., & Reppen, R. (1998). Corpus linguistics:
Investigating language structure and use. Cambridge: Cambridge
University Press.

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet Allocation.
Journal of Machine Learning Research, 3, 993–1022.

Blitzer, J., McDonald, R., & Pereira F. (2006). Domain adaptation with
structural correspondence learning. Proceedings of the Conference
on Empirical Methods in Natural Language Processing, 120–128.

Bryen, D. N. (2010). Communication during times of natural or man-
made emergencies: The potential of speech-generating devices.
International Journal of Emergency Management, 7(1), 17–27.

Copestake, A. (1997). Augmented and alternative NLP techniques for
augmentative and alternative communication. In Proceedings of the
ACL Workshop on Natural Language Processing for Communication
Aids. Madrid.

Davis, A. B., Moore, M. M., & Storey, V. C. (2003). Context-Aware com-
munication for severely disabled users. ACM SIGCAPH Computers and
the Physically Handicapped, 73–74, 106–111.

DeRuyter, F., McNaughton, D., Caves, K., Bryen, D. N., & Williams, M. B.
(2007). Enhancing AAC connections with the world. Augmentative
and Alternative Communication, 23(3), 258–270.

Dominowska, E., Roy, D., & Patel, R. (2002). An adaptive context-sensitive
communication aid. In Proceedings of the 17th Annual International
Conference on Technology and Persons with Disabilities.

Eulenberg, J. M., Reid, R. J., & Rahimi, M. A. (1977). Representation
of language space in speech prostheses. In Proceedings of
the 4th Conference on Systems and Devices for the Disabled,
Seattle, WA.

Fager, S. K., Beukelman D. R., & Jakobs, T. (2010). New AAC access
strategy—Gesture enhanced word prediction. Presented, American
Speech Language and Hearing Association Annual Conference,
Philadelphia, PA.

Fager, S. K., Beukelman, D. R., Jakobs, T., & Hosom, J. P. (2010).
Evaluation of a speech recognition prototype for speakers with mod-
erate and severe dysarthria: A preliminary report. Augmentative and
Alternative Communication, 26(4), 267–277.

Fulcher, K. (2011). Webcrawler progress report. Unpublished report.
University at Buffalo.

Garay-Vitoria, N., & Abascal, J. (2006). Text prediction systems:
A survey. Universal Access in the Information Society, 4(3),
188–203.

Goodenough-Trepagnier, C., Tarry, E., & Prather, P. (1982). Derivation
of an efficient nonvocal communication system. Human Factors:
The Journal of the Human Factors and Ergonomics Society, 24(2),
163–172.

Higginbotham, D. J. (1992). Evaluation of keystroke savings across five
assistive communication technologies. Augmentative and Alternative
Communication, 8(4), 258–272.

Higginbotham, D. J., Bisantz, A., Sunm, M., Adams, K., & Yik,
F. (2009). The effect of context priming and task type on
augmentative communication performance. Augmentative and
Alternative Communication, 25(1), 19–31.

Higginbotham, D. J., & Lesher, G. W. (2004). The ambiguous keyboard.
Perspectives on Augmentative and Alternative Communication, April,
12–16.

Higginbotham, D. J., Lesher, G. W., & Luo, F. (2008). Using a web
crawler to enhance AAC. International Society for Augmentative and
Alternative Communication, Montreal, Canada. ISAAC.

Hosom, J. P., Jakobs, T., Baker, A., & Fager, S. (2010). Automatic speech
recognition for assistive writing in speech supplemented word pre-
diction. In Eleventh Annual Conference of the International Speech
Communication Association, Makuhari, Japan.

Ichbiah, J. D. (1996). Method for designing an ergonomic one-finger
keyboard and apparatus therefore. U.S. Patent #No. 5,487,616.
Washington, DC: U.S. Patents and Trademarks Office.

Judge, S., & Friday, M. (2011). Ambiguous keyboard for AAC. Journal of
Assistive Technologies, 5(4), 249–256.

Koester, H. H., & Levine, S. P. (1994). Learning and performance of able-
bodied individuals using scanning systems with and without word
prediction. Assistive Technology, 6(1), 42–53.

Koester, H. H., & Levine, S. (1996). Effect of a word prediction feature
on user performance. Augmentative and Alternative Communication,
12(3), 155–168.

Kristensson, P. O., & Zhai, S. (2007). Command strokes with and without
preview: Using pen gestures on keyboard for command selection. In
CHI ’07: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, Los Angeles.

Kushler, C. K. (1998, March). AAC: Using a reduced keyboard. CSUN
’98: California State University Conference on Disability Technology,
Los Angeles.

Lesher, G. W., & Moulton, B. J. (2000). A method for optimizing
single-finger keyboards. In Proceedings of the RESNA 2000 Annual
Conference, Orlando.

Lesher, G. W., Moulton, B. J., & Higginbotham, D. J. (1998a). Optimal
character arrangements for ambiguous keyboards. IEEE Transactions
on Rehabilitation Engineering, 6(4), 415–423.

Lesher, G. W., Moulton, B. J., & Higginbotham, D. J. (1998b).
Techniques for augmenting scanning communication. Augmentative
and Alternative Communication, 14(2), 81–101.

23 Natural Language Processing and AAC

D
ow

nl
oa

de
d 

by
 [

"U
ni

ve
rs

ity
 a

t B
uf

fa
lo

 L
ib

ra
ri

es
"]

 a
t 0

7:
21

 0
8 

M
ar

ch
 2

01
2 



Lesher, G. W., Moulton, B. J., Higginbotham, D. J., & Alsofrom, B.
(2002). Limits of human word prediction performance. Proceedings
of the California State University Northridge Conference on Disability
Technology, Los Angeles.

Lesher, G. W., & Rinkus, G. J. (2002). Leveraging word prediction
to improve character prediction in a scanning configuration. In
Proceedings of the RESNA 2002 Annual Conference.

Levine, S. H., Trepagnier, G. C., Getschow, C. O., & Minneman, S. L.
(1987). Multi-character key text entry using computer disambigua-
tion. In RESNA 10th annual conference, San Jose.

Li, J., & Hirst, G. (2005). Semantic knowledge in word completion. In
Proceedings of the 7th international ACM SIGACCESS Conference on
Computers and Accessibility, ACM: New York.

Matiasek, J., Baroni, M., & Trost, H. (2002). FASTY—A multi-lingual
approach to text prediction. In ICCHP ’02: Proceedings of the
Computers Helping People with Special Needs Conference. Linz,
Austria: Springer.

Min, H. (2012). Exploring the contribution of conversational context in
word prediction. Unpublished manuscript, State University of New
York at Buffalo.

Nantais, T., Shein, F., & Treviranus, J. (1994). A predictive
selection technique for single-digit typing with a visual key-
board. IEEE Transactions on Rehabilitation Engineering, 2(3),
130–136.

Patel, R., & Radhakrishnan, R. (2007). Enhancing access to situational
vocabulary by leveraging geographic context. Assistive Technology
Outcomes and Benefits, 4(1), 99–114.

Reiter, E., Turner, R., Alm, N., Black, R., Dempster, M., & Waller,
A. (2009). Using NLG to help language-impaired users tell sto-
ries and participate in social dialogues. In Proceedings of the 12th
European Workshop on Natural Language Generation, Association for
Computational Linguistics: Stroudsburg.

Roark, B., de Villiers, J., Gibbons, C., & Fried-Oken, M. (2010).
Scanning methods and language modeling for binary switch typ-
ing. In Proceedings of the NAACL HLT 2010 Workshop on Speech
and Language Processing for Assistive Technologies, Association for
Computational Linguistics: Stroudsburg, PA.

Shannon, C. E. (1951). Prediction and entropy of printed
english. Bell Systems Technical Journal, 30, 30–64.

Swiffin, A. L., Arnott, J. L., Pickering, J. A. & Newell, A. F. (1987).
The use of syntax in a predictive communication aid for the phys-
ically impaired. In Proceedings of the Tenth Annual Conference on
Rehabilitation Technology: San Jose, CA.

Trnka, K. (2008). Adapting word prediction to subject matter without
topic-labeled data. In Proceedings of the 10th international ACM
SIGACCESS Conference on Computers and Accessibility, ACM: New
York, NY.

Trnka, K., Yarrington, D., McCaw, J., & McCoy, K. (2009). User inter-
action with word prediction: The effects of prediction quality. ACM
Transactions on Accessible Computing, 1(3), 1–34.

Trnka, K., Yarrington, D., McCoy, K., & Pennington, C. (2006). Topic mod-
eling in fringe word prediction for AAC. In Proceedings of the 11th
International Conference on Intelligent User Interfaces. ACM: New
York, NY.

Wandmacher, T., & Antoine, J. Y. (2007). Methods to integrate a lan-
guage model with semantic information for a word prediction com-
ponent. In EMNLP ’07: Proceedings of the conference on empirical
methods in natural language processing: Prague.

Wandmacher, T., Antoine, J. Y., Poirier, F., & Départe, J. P. (2008). Sibylle,
an assistive communication system adapting to the context and its
user. ACM Transactions on Accessible Computing, 1(1), 1–30.

Ward, D. J., Blackwell, A. F., & MacKay, D. J. C. (2000). Dasher—a data
entry interface using continuous gestures and language models. In
Proceedings of the 13th Annual ACM Symposium on User Interface
Software and Technology, ACM: New York, NY.

Wisenburn, B., & Higginbotham, D. (2008). An AAC application using
speaking partner speech recognition to automatically produce con-
textually relevant utterances: Objective results. Augmentative and
Alternative Communication, 24(2), 100–109.

Wisenburn, B., & Higginbotham, D. (2009). Participant evaluations of
rate and communication efficacy of an AAC application using natural
language processing. Augmentative and Alternative Communication,
25(2), 78–89.

Zhai, S., Kristensson, P. O., Gong, P., Greiner, M., Peng, S. A., Liu, L. M., &
Dunnigan, A. (2009). Shapewriter on the iphone: From the laboratory
to the real world. In Proceedings of the 27th International Conference
Extended Abstracts on Human Factors in Computing Systems, ACM:
New York, NY.

D. J. Higginbotham et al. 24

D
ow

nl
oa

de
d 

by
 [

"U
ni

ve
rs

ity
 a

t B
uf

fa
lo

 L
ib

ra
ri

es
"]

 a
t 0

7:
21

 0
8 

M
ar

ch
 2

01
2 


