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ABSTRACT

A transcription system that requires accurate general name
transcription is faced with the problem of covering the large
number of names it may encounter. Without any prior knowl-
edge, this requires a large increase in the size and complex-
ity of the system due to the expansion of the lexicon. Fur-
thermore, this increase will adversely affect the system per-
formance due to the increased confusability. Here we pro-
pose a method that uses meta-data, available at runtime to
ensure better name coverage without significantly increas-
ing the system complexity. We tested this approach on a
voicemail transcription task and assumed meta-data to be
available in the form of a caller ID string (as it would show
up on a caller ID enabled phone) and the name of the mail-
box owner. Networks representing possible spoken realiza-
tion of those names are generated at runtime and included
in network of the decoder. The decoder network is built
at training time using a class-dependent language model,
with caller and mailbox name instances modeled as class
tokens. The class tokens are replaced at test time with the
name networks built from the meta-data. The proposed al-
gorithm showed a reduction in the error rate of name tokens
of 22.1%.

1. INTRODUCTION

Many applications, such as directory assistance and name
dialers, require an Automatic Speech Recognition (ASR)
system capable of accurate name transcription. Building
such a system is complex due to the very large number of
different names it may encounter. An additional compli-
cating factor is the pronunciation of names which can vary
significantly among speakers. As a result, ASR research
on name recognition has received a fair amount of atten-
tion, e.g. [1, 2, 3, 4, 5]. In [1], the feasibility of a di-
rectory assistance application with as many as 1.5 million

names was investigated. It showed that recognition accu-
racy drops approximately logarithmically with increasing
vocabulary size. A significant degradation in performance
with increasing lexicon size was also noted in [4], however
it showed that a larger lexicon, allowing more diverse pro-
nunciations, was beneficial. Most efforts have focused on
soliciting more detailed speech input from the user in the
form of spelling, and have shown that this improves the sys-
tem performance. In [2], neural networks are used to focus
the search on the most discriminative segments in a multi-
pass approach. Along similar lines, it is shown in [5] that ac-
curacy can be improved by incorporating confidence scores
into the decision process.

Common among all previous work is that the coverage
issue was addressed by increasing the vocabulary size. The
increased confusability introduced by that increase is then
addressed by more complex search and acoustic modeling.
Something that is not taken into account in such a mod-
eling approach is the prior probability distribution across
names. Indeed, if no additional information is available, a
uniform (or context independent frequency weighted) dis-
tribution across names is a reasonable estimate. However,
in most contexts, a very small subset of the possible names
will account for most of the true probability mass. In other
words, the distribution of names seen in the speech of a par-
ticular speaker is very unlikely to be distributed uniformly
across the large list of possible names. If the subset of
names that are most likely to occur in a given context are
known, the system accuracy can be increased with a de-
crease in complexity.

In the work presented here, we focus on name recogni-
tion in a voicemail transcription task and assume context
information or meta-datais available in the form of the
name of the mailbox owner and the caller ID string from
the incoming call leaving the voicemail message. Given
the prevalence of caller identification provided by the phone



companies, this appears to be a reasonable assumption. First
in section 2 we describe the voicemail database. Then in
section 3 we describe how the meta-data is used to condi-
tion the ASR system. Section 4 describes the experimental
results obtained using this approach and section 5 discusses
these results.

2. DATABASE

The transcription experiments were conducted on a 100 hour
corpus of voicemail messages collected from the voicemail
boxes of 140 employees at AT&T. This corpus, named Scan-
mail, contains approximately 10,000 messages from approx-
imately 2500 speakers. The corpus is approximately gender
balanced and approximately 12% of the messages are from
non-native speakers (as assessed by the labeler from listen-
ing to the speech). The mean duration of the messages is
36.4 seconds, the median is 30.0 seconds.

The messages were manually transcribed and those parts
of the transcripts that identify the caller and mailbox owner
were bracketed. The identifications usually occur in the be-
ginning of the message as in

hi [Greeting: mister jones] this is
[CallerID: john smith] calling...

A 2 hour test set was chosen by randomly selecting 238
messages from the corpus. The remaining speech was used
as the training set to build the acoustic and language models.
In this test set, there were 317 word tokens corresponding to
caller names and 219 word tokens corresponding to mailbox
owner names.

3. APPROACH

Our approach to including the name meta-data into the ASR
system uses a class-based language model, built at training
time. This language model represents name occurrences
by class tokens. Then at test time, the name meta-data is
used to produce a name network that gives possible, prob-
ability weighted spoken realizations of the meta-data de-
fined names. That name network is then included in the
recognition network by a network replacement step. Sec-
tion 3.1 describes the language model, section 3.2 describes
the name networks and section 3.3 describes the network
replacement.

3.1. Class-Based Language Model

We follow an approach similar to that in [6] for constructing
class-based language models. Sequences of tokens in the
training corpus that were annotated as the mailbox name or
the caller name were replaced with the class labels〈mname〉
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and〈cname〉 , respectively. From this corpus, with class la-
bels treated as words, a standard Katz backoff trigram model
was built, and encoded as a weighted finite-state automaton.
To make the model usable, transitions labeled with class la-
bels must then be replaced by the sequences of words that
are members of that class.

3.2. Name Network

For each voicemail message in the test set, the name of the
mailbox owner was provided, and the name of the caller, if
it was available, which it was for 71 percent of the test mes-
sages. For each provided name, e.g. Jeremy Jones, there
are a variety of ways in which the name could be realized,
e.g. Jerry Jones, Mister Jones, Jeremy, etc. This variation
is the result of two random processes: first, the sequence
of title, first name and last name can vary; next there can
be many possible forms of the first name. From the training
corpus, we estimated, for each name class, the probability of
different realizations of the sequence of title, first name (re-
gardless of form) and last name. Figure 1 shows a weighted
acceptor with first name and last name labels, which repre-
sents a distribution over possible name sequences, weighted
by negative log probabilities.

For the probabilities of forms of first names, we made
use of an internal AT&T directory listing, which includes
the full name and optional nicknames for 40,000 employ-
ees. For a given first name, we counted each nickname for
people with that name, and used the maximum likelihood
estimate based on these counts for the nickname given the



name1. For a particular caller ID, the<first name> and
<last name> tokens in the graph in figure 1 must be re-
placed by the actual last name and a distribution over possi-
ble first name forms – i.e. nicknames or the full form – for
the specific caller. Figure 2 shows such a weighted name
sequence acceptor when the caller name is Jeremy Jones.

All occurrences of the〈cname〉 token in the language
model must then be replaced by this network, with their
weights combined. This can be done with composition of
finite-state transducers, as discussed in [6].

3.3. Replacement in the ASR network

The Scanmail voicemail system [7] at AT&T uses an opti-
mized recognition network, which combines the pronunci-
ation lexiconL and the grammarG into a single optimized
finite-state transducer through off-line composition, deter-
minization and minimization [8]. This network composi-
tion and optimization can be quite costly in space and time,
and is generally done once and the result treated as a static
model.

In the current scenario, this resource cannot be static,
since each message can have a different mailbox and caller
ID. Composing and optimizing the entire network for each
message is impractical. To avoid this, we provide each name
class label with a special phone symbol in the lexicon, which
allows us to produce an optimizedL ◦ G for the class-based
G. For each message, we produceL ◦ G′ by composing
the name networkG′ with the lexicon and optimizing. Ev-
ery transition in the original class-basedL ◦ G with a name
class label (i.e.〈mname〉 or 〈cname〉 ) as the output label
(and hence the special phone symbol as the input label) is
then replaced with theL ◦ G′ for that name class, and the
weights are combined appropriately. The overhead of pro-
ducing the very smallL ◦ G′ and replacement in the large
L ◦ G is relatively low.

4. EXPERIMENTAL RESULTS

We evaluated our algorithm on the 238 message Scanmail
test set. This test set was drawn from the Scanmail corpus
by random selection of messages. This means that for most
test messages, there will be messages in the training set that
were received in the same mailbox. The number of training
messages received at a particular mailbox varied from 1 to
11 with an average of 3 messages per mailbox. The over-
lap in mailbox recipients results in an experimental setup
that is likely to provide a lower error rate, especially on
names, than a scenario where the test data is from mailboxes
never seen in the training data. To normalize for this effect,

1If no nickname was listed, it was counted as though the full form of
the name was the nickname. In order to always allow for the full form of
the name, if every observation with the name has a nickname, the full form
can be given one count.

we experimented using a different language model for each
test message. The language models were constructed by ex-
cluding training messages from the same mailbox as the test
message.

For the 238 test messages, the〈mname〉 meta-data value
was known for all messages but the〈cname〉 meta-data was
available for only 169 messages. For the messages that did
not have the〈cname〉 meta-data available, we used the a sys-
tem that only used the〈mname〉 class.

To evaluate the performance of the algorithm, in ad-
dition to Word Error Rates (WER) we measured the error
rate on the name tokens corresponding to the〈mname〉 and
〈cname〉 class tokens. Using the alignments produced in
computing the WER, the Name Error Rate (NER) is com-
puted as the percentage of name tokens that were labeled
as an error (either a deletion or a substitution) in that align-
ment.

The baseline system using no name replacements had a
WER of 26.6% (7233 tokens). Using the proposed algo-
rithm replacing only〈mname〉 tokens, the WER dropped to
26.3% (7147 tokens). When replacing both〈mname〉 and
〈cname〉 tokens, the WER rate dropped to 26.0% (7066 to-
kens).

System Word Error Name Error
Rate Rate

Baseline 26.6 % 56.9 %
〈mname〉 26.3 % 45.7 %

〈mname〉 + 〈cname〉 26.0 % 34.8 %

Table 1. WER and NER

The performance of the algorithm is summarized in ta-
ble 1). Among the 219 name tokens corresponding to〈mname〉
class tokens, there were 128 errors in the baseline transcripts.
Using the system that did〈mname〉 replacements, this dropped
to 68 errors. Among the 317〈cname〉 tokens, 177 were
misrecognized in the baseline recognizer output. Using the
〈mname〉 and 〈cname〉 replacement system this error rate
dropped to 119 errors. The total number of misrecognized
name tokens in the baseline was 305 corresponding to a
56.9% NER. Using the〈mname〉 and〈cname〉 replacement
system, the name token error rate dropped to 187 or 34.8%
NER. This is an absolute NER reduction of 22.1%.

The word error rate improvement of the of the〈mname〉
replacement system in terms of the number of tokens was
86 which is higher than the number of corrections among
〈mname〉 tokens (60) showing that the replacement had a
small beneficial effect on the words surrounding the name
tokens. Similarly, for the〈mname〉 and 〈cname〉 replace-
ment system, the number of corrected tokens in the WER
computation exceeds the number of corrected〈mname〉 and
〈cname〉 tokens by 49 showing the same small beneficial ef-



fect.
Out of the 536 name tokens corresponding to the〈mname〉

and〈cname〉 class tokens, 35 were out of vocabulary (OOV)
word tokens. The〈mname〉 and 〈cname〉 replacement sys-
tem correctly recognized 24 (69%) of those.

We computed the runtime overhead on a 30 message,
randomly selected from the test set. The average real time
factor processing the messages with the baseline system was
3.8. The runtime of the〈mname〉 replacement experiment
increased this factor to 4.3 (a 13% increase). For the〈mname〉
and〈cname〉 replacement experiment, the average real-time
factor was 4.6, a 20% increase compared to the baseline.

5. CONCLUSION

Although the decrease in overall WER was not large, names
are of particular importance, so that the large reduction in
name error rate is critical to both the perception and use of
the system. Scanmail users have expressed a strong desire
for the system to recognize these tokens correctly.

The results show that the proposed algorithm is not only
useful for addressing errors that arise from OOV tokens but
also improves on in-vocabulary name recognition. Where
in a static system, the distribution across names may be
fairly flat, the meta-data dependent system effectively pro-
vides a relatively peaked distribution for those names that
correspond to allowed realizations of the given names.

Unlike previous efforts, the use of meta-data allows for
the design of a system with good name coverage without
a significant increase in system complexity. Although, un-
like other systems, the use of meta-data incurs a run-time
overhead at test time, this overhead is possibly smaller than
the additional overhead incurred by a significant increase in
complexity.

In contrast to systems with a static name inventory, the
proposed algorithm avoids the need for manual system de-
sign when it is moved to new environment. Where a static
system will likely incur an increase in the OOV rate, the pro-
posed algorithm automatically adapts due to the run-time
network generation.
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