
CONTINUOUS SPACE DISCRIMINATIVE LANGUAGE MODELING

P.Xua, S.Khudanpura, M.Lehrb, E.Prud’hommeauxb, N.Glennd, D.Karakosa, B.Roarkb, K.Sagaec, M.Saraçlare,
I.Shafranb, D.Bikelf, C.Callison-Burcha, Y.Caoa, K.Hallf, E.Haslerg, P.Koehng, A.Lopeza, M.Posta, D.Rileyh

aJHU, bOHSU, cUSC, dBYU, eBoğaziçi U., fGoogle, gEdinburgh, hRochester

ABSTRACT

Discriminative language modeling is a structured classifica-

tion problem. Log-linear models have been previously used to

address this problem. In this paper, the standard dot-product

feature representation used in log-linear models is replaced

by a non-linear function parameterized by a neural network.

Embeddings are learned for each word and features are ex-

tracted automatically through the use of convolutional lay-

ers. Experimental results show that as a stand-alone model

the continuous space model yields significantly lower word

error rate (1% absolute), while having a much more compact

parameterization (60%-90% smaller). If the baseline scores

are combined, our approach performs equally well.

Index Terms— Discriminative language modeling, neu-

ral network

1. INTRODUCTION

A language model (LM) assigns scores to word strings and

plays an important role in automatic speech recognition

(ASR) and many other applications. Under the predominant

source-channel paradigm for speech recognition, the LM is

generally used as the source of prior information, which eval-

uates the well-formedness of each hypothesis. Therefore,

standard LMs are usually estimated from well-formed text in

a maximum likelihood fashion. Specifically, the joint proba-

bility of a word sequence is often factorized into the product

of local probabilities as below,

P (w1, w2, ..., wl) =

l∏
i=1

P (wi|hi), (1)

where hi is the word history preceding the ith word wi. The

set of conditional distributions {P (w|h)} can be easily esti-

mated based on empirical counts in the text corpus.

Most of the work presented here was done as part of a 2011 CLSP sum-

mer workshop project at Johns Hopkins University. We acknowledge the sup-

port of the sponsors of that workshop. This work was also partially supported

by NSF Grants #IIS-0963898 and #IIS-0964102, and by TUBITAK (Project

No: 109E142). Any opinions, findings, conclusions or recommendations ex-

pressed in this publication are those of the authors and do not necessarily

reflect the views of the sponsors.

Discriminative training of LMs has been proposed as an

effective complement to standard language modeling tech-

niques [1, 2, 3]. Instead of attempting to learn a distribution

over all possible word sequences, the discriminative objective

directly targets the acoustically confusable hypotheses that

the ASR system produces. To train such a model, we usually

require transcribed speech data. An existing recognizer can

be used to decode the speech and generate the corresponding

confusion sets, and then discriminative training will learn to

separate the lowest-error hypothesis from its set of competi-

tors.

In discriminative language modeling, the LM is usually

parameterized as a global linear model. Each word sequence

W is associated with a score, which is the dot product be-

tween the feature vector Φ(W) and the parameter vector Θ.

The probability of W is given by

P (W) =
eΦ(W)·Θ

Z
, (2)

where Z is a normalizer. The features are in general repre-

sented symbolically, namely each word is treated as a distinct

symbol. If n-gram features are used, each distinct word se-

quence of length up to n activates a different feature. This

set of features can be very large and grows quickly with the

training data.

In contrast, continuous feature representations are usually

more succinct. Each word in the vocabulary is represented as

a continuous vector. Word sequences can be represented as

the concatenation of the representation for each word. Neu-

ral networks are powerful tools to learn such representations,

they are also capable of learning non-linear features automat-

ically. Therefore, it’s not necessary to define any high order

product features (e.g. bigrams, trigrams...) which often dras-

tically increase the number of model parameters, all the com-

plex non-linear interaction among words in the sequence can

be discovered automatically.

Besides the space advantage, continuous feature represen-

tations are often believed to be able to generalize better. By

mapping each word into a shared continuous space, word sim-

ilarities and sequence similarities can be exploited, allowing

for much more compact representations. We are able to fit

a smaller number of parameters to a large training set, and

potentially generalize better to unseen word sequences.

2129978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

LMs have been trained in the continuous space before

[4, 5], but only for the standard generative language model-

ing, where the goal is to model P (w|h). This work is different

in that it’s the first discriminative LM trained in the continu-

ous space. The most closely related work to our knowledge is

[6]. The authors described a general deep architecture based

on convolutional neural networks that can be used for various

tasks. Our work resembles theirs in that we also use convolu-

tional layers in our architecture, but the important distinction

is that the task we have is a structured prediction problem, as

opposed to more of the standard classification problems pre-

sented in their paper. Therefore, our proposed architecture

carries noticeable differences.

The rest of the paper is organized as follows: We will

present the training of standard discriminative LM in Sec-

tion 2, the same loss function will be used for the continuous

space model. We will then explain how to change the fea-

ture representation into continuous space in Section 3. Some

training issues with the proposed model will be addressed in

Section 4. Experimental results will be presented in Section 5.

2. PERCEPTRON AND MAXIMUM CONDITIONAL
LIKELIHOOD TRAINING

The model in (2) can be trained in several ways. Perceptron

training and maximum conditional likelihood (MCL) train-

ing are two commonly used approaches. Both methods share

the similar intuition–increase the probability of the oracle hy-

pothesis W ∗, while penalizing other hypotheses in the set of

likely candidates output by the recognizer. We denote this set

as GEN(A), where A stands for acoustics. The loss func-

tions of the two methods are shown in (3) and (4),

LP =

(
− log

P (W ∗)
P (Ŵ)

)+

, (3)

LMCL = − log
P (W ∗)∑

W∈GEN(A) P (W)
. (4)

Perceptron training is an iterative procedure, which re-

quires in each iteration identifying the best hypothesis Ŵ ac-

cording the current model. The loss only occurs if the current

model fails to rank the oracle hypothesis on top of the others.

Meanwhile, MCL training directly considers all the compet-

ing hypotheses in GEN(A), the loss exists for all training

instances, therefore, the optimization is generally more com-

plex.

It’s worth noting that with the standard feature represen-

tation, it’s generally hard to train with the MCL loss function

without some kind of feature selection. The number of fea-

tures in GEN(A) is often too large to fit in memory. Fortu-

nately, this problem will disappear with the continuous fea-

ture representation that we’ll introduce in the next section.

3. FEATURE LEARNING USING CONVOLUTIONAL
NEURAL NETS

Note that in (2), the score assigned to the word string is given

by the dot product between the feature vector and the parame-

ter vector. The model is linear in nature, and the features have

to be specified beforehand. In order to capture the non-linear

interactions among words in the sequence, we have to define

features that consist of combinations of words (e.g. bigrams,

trigrams...). The number of such features grows quickly with

data. To describe our approach of representing features, we

first replace the dot product with some non-linear function

g(W ; Θ), thus the model in (2) becomes

P (W) =
eg(W ;Θ)

Z
. (5)

The neural network can be used to parameterize g(W ; Θ).
It has the ability to learn proper embeddings for each word,

and automatically extract non-linear features useful for our

task. In order to assign a score to each word sequence W , our

network architecture has to deal with input of variable length,

which is not what the standard neural network can handle.

In [6], an architecture that can be built on top of variable-

length word sequences was presented. Central to their

methodology is the use of convolutional layers. Fig. 1 shows

the first three layers of their architecture. Each word in the

Fig. 1. Feature learning on word sequences proposed in [6]

sentence is associated with a continuous vector– this can be

described as a look-up operation in the table R. The concate-

nated vector for the sentence does not have a fixed dimension

either, therefore, features are extracted locally within fixed-

size windows. As we can see, a linear transform T spans over

only n words (n = 3 here) and is applied to every n-gram in

the sentence. Non-linear functions such as tanh are usually

applied enabling nonlinear features to be detected.

For classification tasks such as the ones presented in [6],

where the goal is to assign classes to the words in the input

sequence, the features after the transform T in Fig. 1 usually

have to go through a max-pooling layer which keeps only the

top-k largest values in the feature vector. The resulting fixed-

2130

size vector can be used as input to the standard neural network

layers (e.g. softmax).

Discriminative language modeling is a different classifi-

cation task in which the classes are word sequences. The fea-

tures we extract from each individual sequence are not used to

construct the distribution over classes directly, thus the max-

pooling layer is not necessary. The neural net in our architec-

ture only has to output a score g(W) for each word sequence

W . Therefore, the extracted features for the sequence can be

summed up directly.

Fig. 2. Neural net representation of g(W) used in this paper

Fig. 2 shows the proposed architecture to parameterize

g(W). The first two layers are the same as in Fig. 1. Be-

fore summing up the features, we apply another shared linear

transform F , the result of which is a score assigned to the n-

gram. Note that F can span over more than one feature vector

in the previous layer. Such stacking of convolutional layers is

often used for vision tasks [7], allowing for more global fea-

tures to be extracted in upper layers. In order to obtain a score

for the entire sequence, the scores for all n-grams are added

up. Compared with the standard dot-product representation

for g(W), we replace the large number of n-gram features

with a neural net structure that can be shared by all n-grams,

leading to a much more compact model.

Once we have a score for every hypothesis in GEN(A),
we can easily compute P (W) and train our model within the

composed neural network. The complete architecture of our

approach is shown in Fig. 3.

4. TRAINING ISSUES

Albeit large, the architecture in Fig. 3 is not difficult to train.

Gradient descent methods can be easily applied to all parame-

ters in R, T and F with the help of back propagation. Taking

advantage of the shared structures and tied parameters, the

optimization procedure can usually be greatly simplified.

Fig. 3. Full architecture for discriminative LM

When computing g(W), we have to go through all n-

grams for each W in GEN(A). Fortunately, GEN(A) usu-

ally contains hypotheses that share a lot of n-grams in com-

mon. Therefore, computing scores for these n-grams only

has to be done once for each training instance. The back

propagation stage can also benefit greatly from the fact that

n-gram scores are linearly combined. To illustrate this, write

g(W) as the sum of each n-gram scores, namely g(W) =
g(sW1) + g(sW2)... + g(sWlW), where sWi denotes the ith n-

gram in W , and lW is the total number of n-grams in W .

Taking the gradient of the MCL loss function in (4), we have

∇LMCL = −∇g(sW
∗

1)−∇g(sW
∗

2)...−∇g(sW
∗

lW∗)

+
∑

W∈GEN(A)

P (W)
(∇g(sW1) +∇g(sW2)...+∇g(sWlW)

)
. (6)

As we can see, if some n-gram s appears the same number

of times in W ∗ and all other W in GEN(A), then −∇g(s)+∑
W∈GEN(A) P (W)∇g(s) = 0, the contribution of s to the

gradient is exactly zero. Therefore, it is also not necessary to

go through all n-grams in the back propagation stage. Only n-

grams that are not shared by GEN(A) generate error signal

to update the parameters.

In theory, any differentiable loss function can be applied

on top of the architecture. However, the local optimum prob-

lem of training neural networks can make non-convex loss

functions less desirable. The Perceptron training seems to

have trouble reaching a good solution in our architecture.

Therefore, we’ll only report results using MCL trained mod-

els in the next section.

5. EXPERIMENTS & RESULTS

Our experiments are done on the English conversational tele-

phone speech (CTS) dataset. The state-of-the-art IBM Attila

recognizer is trained on 2000hrs of speech, half of them from

the Fisher corpus, and the other half comes from Switchboard

and Call-home. The baseline LM is a 4-gram LM trained on

the 2000hrs of transcript containing about 25 million words,

2131

plus close to 1 billion words of web data. For training the

discriminative LM, the 2000hrs of transcribed speech data is

divided into 20 partitions. The acoustic model trained on the

2000hrs is used to decode all the partitions. But the LM used

to decode each partition only includes transcripts from the

other 19 partitions. Such cross-validated language modeling

is often used for training discriminative LM [2]. The hope is

to avoid LM overfitting such that the confusions generated for

each partition resemble those we’ll see on the test data. We

produce 100-best lists for all utterances in each partition for

training discriminative LMs. The trained models are used to

rerank the 100-best lists on the test data.

We train the standard averaged perceptron-based discrim-

inative LM with trigram features in comparison with the con-

tinuous space discriminative LM (CDLM) using three train-

ing sets containing 2, 4, and 8 partitions respectively. The

Dev04f corpus is used as the tuning set, consisting of 3.3hrs

of speech. The final word error rates (WER) are reported on

the 3.4hrs Eval04f corpus.

For training CDLMs, online gradient descent is used. The

size of the feature extraction windows is fixed at three words,

since it is generally thought that the standard discriminative

LM generally does not benefit much from n-gram features be-

yond trigrams [2, 3]. The size of the word representation, and

the size of the hidden layer are optimized on the development

set. All the parameters in R, T, F are randomly initialized.

Table 1 shows the WER results of using the CDLM and

the standard Perceptron DLM. Note that both the Perceptron

and the CDLM scores can be combined with the baseline

scores (AM+LM scores), which are generally important

sources of information. The combination weights can be

tuned on the develop set. As we can see, without the help

of the baseline scores, the CDLM performs much better than

the standard Perceptron. Nonetheless, the advantages disap-

pear as the baseline scores are combined. The improvement

achieved by the two approaches become almost identical.

Being a stronger stand-alone model seems to prove the supe-

rior generalization ability enabled by the continuous feature

representation. We may also have benefitted from the fact

that the MCL loss function considers the entire confusion set,

which is difficult to train with using the symbolic representa-

tion. However, such advantages are apparently offset by the

acoustic model and the maximum likelihood trained LM.

Besides the competitive performance, our CDLM tech-

nique consistently produces much smaller models (ranging

from 60% to 90% smaller), the sizes of which do not increase

directly with more data. On the other hand, the number of

features for the Perceptron DLM clearly has a tendency to in-

crease as more training data becomes available.

6. CONCLUSION

We describe continuous feature representations for discrimi-

native language modeling. Features are learned automatically

dev eval #parameters

1-best ASR 22.8 25.7

Perceptron

2 parts 22.3/31.1 25.1/30.2 1.7M

4 parts 21.8/29.5 25.1/29.3 3.3M

8 parts 21.7/29.4 24.8/29.1 5.3M

CDLM

2 parts 22.3/29.7 25.2/29.0 0.74M

4 parts 21.9/29.0 24.9/28.5 0.32M

8 parts 21.6/28.5 24.7/28.0 1.8M

Table 1. WER of Perceptron DLM and CDLM. Each cell

contains the WER with/without combining with the baseline

scores.

through a novel neural network architecture.The resulting LM

significantly outperforms the standard Perceptron DLM as a

stand-alone model. When combined with the baseline scores,

our model performs equally well. The proposed architecture

also produces much more compact models, reducing the num-

ber of parameters by 60%-90% in our experiments.

7. REFERENCES

[1] H. Kuo, E. Fosler-Lussier, H. Jiang, and C. Lee, “Dis-

criminative training of language models for speech recog-

nition,” in Proc.of International Conference on Acous-
tics, Speech and Signal Processing. IEEE, 2002, vol. 1,

pp. 325–328.

[2] B. Roark, M. Saraclar, and M.Collins, “Discriminative

n-gram language modeling,” Computer Speech and Lan-
guage, vol. 21, pp. 373–392, 2007.

[3] Z. Li and S. Khudanpur, “Large-scale discriminative

n-gram language models for statistical machine transla-

tion,” in Proc.of the Eighth Conference of the Association
for Machine Translation in the Americas (AMTA-2008),
2008.

[4] Y. Bengio, R. Ducharme, and P. Vincent, “A neural prob-

abilistic language model,” Journal of Machine Learning
Research, vol. 3, pp. 1137–1155, 2003.

[5] H. Schwenk, “Continuous space language models,” Com-
puter Speech and Language, vol. 21, pp. 492–518, 2007.

[6] R. Collobert and J. Weston, “A unified architecture for

natural language processing: deep neural networks with

multitask learning,” in Proc.of ICML 2008, 2008, pp.

160–167.

[7] Yann Lecun, Lon Bottou, Yoshua Bengio, and Patrick

Haffner, “Gradient-based learning applied to document

recognition,” in Proceedings of the IEEE, 1998, pp.

2278–2324.

2132

