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aUSC, bOHSU, cJHU, dBYU, eBoğaziçi U., fGoogle, gEdinburgh, hRochester

ABSTRACT
This paper investigates semi-supervised methods for discriminative
language modeling, whereby n-best lists are “hallucinated” for given
reference text and are then used for training n-gram language mod-
els using the perceptron algorithm. We perform controlled exper-
iments on a very strong baseline English CTS system, comparing
three methods for simulating ASR output, and compare the results
with training with “real” n-best list output from the baseline recog-
nizer. We find that methods based on extracting phrasal cohorts –
similar to methods from machine translation for extracting phrase
tables – yielded the largest gains of our three methods, achieving
over half of the WER reduction of the fully supervised methods.

Index Terms— language modeling, automatic speech recogni-
tion, discriminative training, semi-supervised methods

1. INTRODUCTION
Standard generative language modeling methods for automatic
speech recognition (ASR) involve counting n-grams from large
corpora, normalizing them to produce multinomial models over a
fixed vocabulary and smoothing (regularizing) the model to avoid
assigning zero probabilities. Other than perhaps selecting training
corpora to skew the model towards one domain or another, there is
nothing in this modeling approach that is optimized for a particular
task objective. Regardless of whether the application making use
of the language model is automatic speech recognition or machine
translation, the same parameterizations will be derived from the
corpora, despite the fact that the kinds of ambiguities that the model
is used to resolve are radically different in the two applications. In
speech recognition, alternative transcriptions will be acoustically
confusable; in machine translation, acoustic confusability has noth-
ing to do with the kinds of alternative translations that the language
model is scoring within the system.

Discriminative language modeling has been used to optimize
large vocabulary speech recognition performance, both with stan-
dard n-gram features [1, 2], as well as with morphological, syn-
tactic and trigger features across a variety of languages and tasks
[3, 4, 5, 6]. The paradigm in this approach is to run the baseline
recognizer over training data and optimize a log linear model using
some discriminative objective, such as global conditional log likeli-
hood or with the perceptron algorithm. Because transcribed speech
is required to train models with these methods, the amount of data
that is available for such an approach is typically a small fraction of
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what is available to train generative language models, which only re-
quire text. The current paper is focused on the problem of applying
discriminative language modeling methods to training data that con-
sists of just text. Should such methods prove successful, they could
be applied to large scale text resources just as generative models are.

Simulating ASR errors has been pursued in the past, using a
number of methods. Printz and Olsen [7] presented methods for cal-
culating the acoustic confusability of words, for the purpose of esti-
mating the word error rate (WER) of a model in a new domain. Chen
et al. [8] provide some new methods in this vein. More recently, Tan
et al. [9] pursued methods that exploited parallel corpora of ASR
output and reference text to learn models of errors, using methods
popularized for machine translation (MT). None of these methods
have been directly applied to improving system performance.

Simulated errors have been used to improve MT systems [10,
11]. Exploiting simulated errors for ASR system improvements was
explored in Jyothi and Fosler-Lussier [12] using weighted finite-state
transducer approaches for generating sequences confusable with the
reference. Kurata et al. [13] also used weighted finite-state transduc-
ers, modeling acoustic similarity to generate confusable strings in a
process they call “pseudo-ASR,” which creates training data for a
discriminative model that produced improved WER in Japanese call
center data [14]. We will explore similar methods in this paper, ap-
plied to large vocabulary continuous telephone speech systems, and
contrast them with methods closer to the Tan et al. [9] methods cited
above and the closely related methods of cohort extraction [15].

The main purpose of this paper is to perform controlled exper-
imentation under a number of conditions, to determine how much
WER reduction can be achieved with these semi-supervised meth-
ods, versus fully supervised training on the same data. We carefully
prepared a large discriminative language modeling corpus, and ex-
amined performance when training models on real n-best lists pro-
duced under standard conditions versus when training models on
hallucinated n-best lists produced under various protocols for pro-
ducing such lists. We find that methods for direct extraction of
phrasal cohorts yield the largest WER reductions of our three exam-
ined methods, just over half the gain achieved with fully supervised
methods, and that improvements can also be achieved by modeling
confusability at the phone level. Given that these semi-supervised
methods can be applied to arbitrarily large text corpora, this bodes
well for additional system gains beyond what was achieved for these
moderate sized training sets.

2. DATA
For this paper, we focused on English conversational telephone
speech (CTS), and used the IBM Attila speech recognition software
library [16] to build a baseline system. The training data for acoustic
models consists of about 2000 hours of speech segments from about
14500 telephone conversations (25M words), of which about 11000
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conversations are from the Fisher corpus and 3500 from the Switch-
board corpus. We utilized the NIST RT04 Fall development and
evaluation test for benchmarking the performance of our systems.
The development and evaluation sets consist of about 38K words
and 37K words respectively, spanning about 2 hours.

The acoustic models contain 41 phones, a 3-state left-to-right
HMM topology for phones, 4K clustered quinphone states, 150K
Gaussians, a linear discriminant transform, and a semi-tied covari-
ance transform. The acoustic features consist of 13 coefficient per-
ceptual linear coding vectors with speaker-specific vocal tract length
normalization (VTLN). This training approach is as described in
[17], and we refer readers there for further details. The baseline
4-gram language model defined over 50K word vocabulary was esti-
mated by interpolating the transcripts and similar data extracted from
the web as described in [18].

In order to produce training data for discriminative language
modeling, we decoded the training data using 20-fold cross valida-
tion. That is, while decoding a fold, we ensured that the transcripts
from that fold were kept aside in estimating the language model used
for decoding the fold. All three stages of the decoding were per-
formed in this 20-fold cross-validation manner. Thus, we took more
care to avoid biasing the decoder than the standard process of em-
ploying 20-fold cross-validation just in the last stage of decoding.

For the controlled studies of the current paper, we used up to
eight of these folds to train our discriminative language models. In
fully supervised conditions, the lattices output by the above cross-
validation scenario were used to produce the n-best lists directly. To
compare with these fully supervised conditions, we generated hallu-
cinated n-best lists for the same utterances. To produce these sim-
ulated n-best lists, we followed another cross-validation procedure:
For each of the k folds in the given training set, we trained confu-
sion models (using one of our three methods detailed below) on the
other k−1 folds, and used them to produce n-best lists for that fold.
In such a way we produce alternative n-best lists for the same data
as in the fully supervised scenario, to provide to the discriminative
training algorithm. In the results presented below, we investigated
conditions with 2, 4 and 8 folds.

3. METHODS

We present three methods for generation of simulated ASR n-best
lists from text to serve as training material for discriminative lan-
guage models. The first is based on finite-state transducers that
model phone confusion in the output of the baseline system. The
other two methods consider confusability at the level of words and
phrases directly, using techniques developed for machine translation.

3.1. Finite-state transducers for modeling phone confusion

Our first proposed method for generation of simulated n-best lists is
to model confusions at the phone level using a process that can be
thought of as a simulation of an ASR system without actual speech.
The more faithful our simulation is to the targeted ASR system, the
more likely it is that the resulting simulated n-best lists will be effec-
tive training material for discriminative language modeling.

Given a sequence of words S and a weighted finite-state trans-
ducer X that maps phone sequences to confusable phone sequences,
a list of phonetically confusable word sequences can be generated
using a pronunciation dictionary L and a generative language model
G (also encoded as finite-state transducers) through the composition
S ◦L◦X ◦L−1 ◦G. The initial sequence of words is composed with
the pronunciation dictionary, resulting in a corresponding lattice of

phone sequences (since words in the dictionary may have multiple
corresponding pronunciations). Composing this lattice with a phone
confusion transducer produces a lattice encoding several confusable
phone sequences. An inverse pronunciation dictionary is then used
to create a lattice of words from the lattice of phones, and finally
the generative n-gram language model is composed with this lattice
of words. A list of word strings confusable with the input string S,
scored according to phonetic confusability and the n-gram language
model, can then be generated from this resulting lattice. Since the
same dictionary and generative language model used in an ASR sys-
tem can be used in this approach, whether or not the resulting lists
are similar to what the ASR system would produce depends crucially
on the phone confusion transducer X .

To create a phone confusion transducer, we use real n-best lists
produced by the ASR system we want to simulate, coupled with the
reference transcription corresponding to each n-best list. Using the
dictionary L, the reference strings and each of the strings in the
n-best lists are mapped to corresponding sequences of phones. If
multiple pronunciations are listed for words in L, only one is cho-
sen arbitrarily, so that each word sequence is mapped to exactly one
phone sequence. For each n-best list, we then produce Levenshtein
alignments between the reference phone sequence and each n-best
hypothesis phone sequence. Based on each of these individual align-
ments of pairs of phone strings, each phone in a reference string
corresponds to the same phone in the hypothesis string (phone iden-
tity), to a different phone in the hypothesis string (a substitution),
or to no phone (ε) in the hypothesis string (a deletion). Addition-
ally, a phone in the hypothesis string might not correspond to any
phones in the reference string, in which case ε in the reference string
is aligned with the phone in the hypothesis string (an insertion). Each
alignment between two phone sequences is then composed of a se-
quence of such phone-to-phone (or ε-to-phone, or phone-to-ε) map-
pings, represented as X:Y , where X and Y can be any phone or
ε. Using these sequences, we estimate an n-gram model of phone
identity, substitutions, insertions and deletions, following [19]. We
encode this n-gram model as a weighted finite-state acceptor with
X:Y pairs in the transition arcs, and by separating these pairs so
that X is an input symbol and Y is an output symbol, we obtain a
phone confusion transducer X . In our experiments, we used 5-gram
phone confusion models.

One practical difficulty with the computation of S ◦ L ◦ X ◦
L−1 ◦ G for a given text string S is that X allows nearly arbitrary
deletions, insertions and substitutions in nearly any context. While
the vast majority of deletions, insertions and substitutions have ex-
tremely low probability in most contexts, they are still encoded in
X , making any composition involving X and L−1 infeasible. We
approach this problem with two strategies. First we prune low prob-
ability transitions from X , reducing the size of the transducer by
60% (the amount of pruning was determined empirically based on
performance on a small held-aside set). The second strategy is to
modify the original composition slightly: given a string S, we first
compute S ◦ L ◦ X , then find the 300 best paths P (which corre-
spond to the highest scoring confusable phone sequences according
to X), and finally proceed with P ◦ L−1 ◦ G (the number of con-
fusable phone sequences to keep was also determined empirically).
Extraction of n-best paths from the resulting transducer produces the
simulated n-best lists.

3.2. Machine translation methods

Above we discussed methods for generating hallucinated ASR n-
best lists using phone-based finite-state transducers. We now turn
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Fig. 1. “MT” pipeline for hallucinating ASR n-best lists.

to generating confusions at the word level. In this section, we
discuss using standard phrase-based statistical machine translation
techniques (MT) to “translate” from reference transcriptions to what
those strings might be as ASR output.

Figure 1 presents the basic “MT” pipeline used to hallucinate
ASR output. There are three input data sources required: 1) a
parallel training corpus consisting of source sentences of human-
generated reference transcriptions and target sentences of true ASR
output; 2) data on which to build a language model for the target lan-
guage output; and 3) data in the source language to be “translated”
into the target language. We first generate word-level alignments of
the sentences in the parallel corpus. From these word alignments,
we build a phrase table and tune the weights of the feature functions
for the phrase translation rules. Using the phrase table and associ-
ated weights, we decode the data to be “translated” to generate the
hallucinated ASR n-best lists that can then be used as training data
for the perceptron.

In the experiments presented here, we use only the top candi-
date from the ASR n-best lists as the target side of our parallel cor-
pus. The language model for translation was built on the source
side (i.e., the reference transcriptions) of the parallel training corpus.
Giza++ ((http://code.google.com/p/giza-pp/) was used to train the
word alignments. Grammar extraction, tuning, and decoding were
performed with Moses (http://www.statmt.org/moses) using default
settings with a few exceptions: since this kind of “translation” is
monotonic, it was not necessary to build a reordering model; we
also set the distortion limit of the decoder to zero in order to prohibit
reordering during decoding.

3.3. Phrasal cohort methods

The approach described in this section bears some similarity to the
MT-based confusion generation. As above, we think of the confu-
sion generation problem as a kind of translation, but one that is in
many ways simpler than translation between two natural languages.
This allows us to use a more straightforward approach than in a
full MT system, rather than configuring existing MT software for
this task. The key observation here is that ASR confusions do not
involve any reordering: the entire recognition pipeline is a time-
synchronized process. Unlike in MT, where the translation rules
have to be extracted in more complex ways, it is easy to identify the
mistakes that an ASR system makes from simple string alignments.

p C(p)
that to you that too you

<s>she <s>and she, <s>oh she

to you to be you

Table 1. Examples of cohort

Central to our methodology is the definition of cohort. The co-
hort for a phrase p, denoted as C(p), is the set of the phrases that are
potential erroneous outputs where the correct transcription is p. Ta-
ble 1 contains a few examples of the cohorts that we extracted from
our baseline ASR system. Note that the phrases in Table 1 contain
identical left and right contexts, which we call pivots, thus the con-
fusions that we learned can be thought of as context-dependent. It
is not necessary to constrain the pivots to be single words; we could
also have multiple words or phone-level contexts serving as pivots.
If we remove the pivots, we then get a set of context-independent
rules. In either case, the key to extracting cohorts is identifying piv-
ots, which can be obtained from Levenshtein string alignments.

To extract cohorts, we assume there is a set of transcribed speech
data where we can learn phrase-level transformations. By aligning
the reference string with the ASR hypothesis based on edit distance,
we can easily find the errors that the ASR system produces. Below
is the alignment between the reference and the 1-best ASR output.

Reference: <s>What kind of a company is it </s>
1-best: <s>What kind of the campaign that </s>

The pivot words are underlined. The phrases between the pivots
form a phrase-level transformation, where “a company is it” is in-
correctly recognized as “the campaign that”. Such alignments can
be done between the reference text and each one of the n-best hy-
pothesis, where n can be a parameter to tune. We can also assign
weights to the translation rule based on the number of times such
errors appear in the n-best hypotheses. In the example above, let n
be 10, if “a company is it” becomes “the campaign that” in all of
the 10-best hypotheses, then the rule has probability 1, if 5 of them
make this error, the probability is 0.5.

With the set of weighted translation rules obtained from the tran-
scribed speech, we can hallucinate n-best lists from the text only.
The set of cohorts essentially defines a phrase table which describes
possible transformations from the reference to the ASR output.
These translation rules can be applied easily to the text and generate
n-best output. Application of these rules to a particular input string
produces a confusion network. Each path through this network is
a confusable string, which is scored according to the translation
rule probabilities. Although it is possible to take generative n-gram
language modeling scores into account in this framework, in this
paper we used only scores derived from the translation rules.

4. EXPERIMENTAL RESULTS

In our experiments, we used the perceptron algorithm to train dis-
criminative language models (DLM) for re-ranking n-best list output
(100-best lists, more precisely) from the baseline ASR system. We
follow the approach outlined in [1, 2], using unigrams, bigrams and
trigrams as features in the model, and using the averaged perceptron
for evaluation on held-aside, development and evaluation sets. The
perceptron is an on-line algorithm, and after every epoch over the
training set as a whole, performance was evaluated on a small held-
aside set. Training stopped when performance on the held-aside set
failed to improve for 5 epochs, and the averaged perceptron model
for the lowest held-out WER epoch was output.
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dev eval

1-best ASR 22.8 25.7

Real n-best lists 2 folds 22.3 –
4 folds 21.8 –
8 folds 21.7 24.8

Phone model lists 2 folds 22.4 –
4 folds 22.3 –
8 folds 22.3 25.3

MT model lists 2 folds 22.5 –
4 folds 22.5 –
8 folds 22.4 25.4

Cohort model lists 2 folds 22.3 –
4 folds 22.4 –
8 folds 22.2 25.2

Table 2. WER results using various n-best lists.

One difference from the methods in [1, 2] is that we did not use
the baseline ASR system score as a feature during training of the n-
gram DLM. Rather, we empirically optimized the scaling parameter
for the baseline ASR score when adding it to the score of the DLM,
after training the DLM independently. For the current results, we
optimized the mixing factor on the development set, and used that
mixing parameterization with both development and evaluation sets.

Table 2 presents our results obtained using 100-best lists hallu-
cinated from text using each of the methods described in section 3.
We show results obtained on development data with varying amounts
of training data to illustrate the effect of dataset size, but test each
method on the evaluation set using only the configuration with low-
est WER on the development set, which, not surprisingly, is the
configuration using the larger portion of the data for each method.
For comparison, we also show the error rates for the 1-best result of
the baseline ASR system, and for fully supervised DLMs trained on
real n-best lists produced by the baseline ASR system. Using real
n-best lists, we obtain an absolute improvement of 0.9% in word
error rate over the baseline, or a 3.5% relative improvement. Our
approach based on phrasal cohorts produced an absolute improve-
ment of 0.5% over the 1-best baseline, which is statistically signif-
icant (p < 0.001) and more than half of the improvement obtained
using real n-best lists. Our phone confusion approach produced an
improvement of 0.4% (p < 0.005). Because these two approaches
work at different levels (phones vs. words and phrases), it is possi-
ble that there might be ways to leverage both approaches for further
improvements. The improvement over the baseline obtained using
our MT-based approach was smaller, at 0.3%, but still statistically
significant at the p < 0.05 level.

5. CONCLUSION

We presented three approaches for generation of hallucinated n-best
lists from text that mimic ASR n-best lists produced from speech,
and showed that discriminative language models trained on these
hallucinated n-best lists can improve ASR word error rates from a
strong baseline. One advantage of the use of hallucinated n-best lists
is that it allows training of discriminative language models using
arbitrary text, instead of transcribed speech.

In contrast to previous work, we compared the use of n-best lists
produced using phone-level and word/phrase-level confusion mod-
eling. We showed that approaches based on either level of confusion
can be beneficial in discriminative language modeling, suggesting
that an approach that works at both levels might produce even fur-
ther gains.
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