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Abstract
Semi-supervised discriminative language modeling uses simu-
lated N-best lists instead of real ASR outputs as its training ex-
amples. In this study we apply two techniques in which artifi-
cial examples are generated using a WFST and an MT system
trained on pairs of reference text and ASR output. We com-
pare the performance of these techniques with the structured
prediction and ranking variants of the WER-sensitive percep-
tron algorithm, and contrast with the supervised case where real
ASR outputs are given as input. Choosing Turkish statistical
morphs as n-gram features, we analyze the similarities between
the hypotheses of these three setups and the number of utilized
features. We show that the MT-based system yields the lowest
WER, not only because the examples generated by this tech-
nique are more effective, but also because the ranking percep-
tron generalizes better with this setup. When trained on a com-
bination of artificial WFST and MT data, the structured per-
ceptron performs as well on an unseen test set as it does when
trained on real ASR output.
Index Terms: discriminative training, semi-supervised learn-
ing, language modeling, ranking perceptron

1. Introduction
As a final stage in automatic speech recognition (ASR), dis-
criminative language modeling (DLM) aims to choose the most
accurate transcription of a spoken utterance among candidate
hypotheses returned by the recognizer, usually in the form of
an N-best list. Supervised DLM training methods use these
candidate hypotheses and their corresponding reference tran-
scriptions as input examples. The downside of this approach
is that a large amount of training data is needed to train a DLM,
which can be a problem if sufficient in-domain speech data are
not available or transcribing them manually is costly. Semi-
supervised discriminative training removes this necessity by us-
ing simulated hypotheses instead of real ones, via a confusion
model which models possible confusions made by the recog-
nizer. Given some reference text, we can generate artificial
training examples that resemble outputs of a real ASR system,
using the confusion model.

Semi-supervised DLM training has recently been popu-
lar in the literature, and there are a number of approaches to
construct an appropriate confusion model (CM) for this task.
One of the approaches uses a weighted finite-state transducer
(WFST) to represent the CM. An example is Kurata et al. [1, 2],
where phoneme similarities estimated from an acoustic model
are specified in the CM by a process called Pseudo-ASR. Jyothi
et al. [3] follow a similar method by modeling the phonetic con-

fusions with a WFST. Another approach makes use of a ma-
chine translation (MT) system to learn these confusions. For
instance, Tan et al. [4] use a phrase-based MT system to learn
error models between parallel corpora of ASR output and refer-
ence text represented by phonemes. Li et al. [5] use translation
alternatives of source phrase sequences to simulate confusions
that could be made by an MT system. In a third approach, Xu et
al. [6] make use of the competing words (cohorts) which occur
in the ASR outputs of untranscribed speech to train their CM. A
comparison of these three approaches is given in Sagae et al. [7].
Although the authors use the same dataset (English n-gram fea-
tures) for all experiments, the language unit they utilize for
training different CMs is different (a phone-based WFST model
and word phrase-based MT and cohort models).

The aim of this study is to investigate the use of MT-based
CMs for generating artificial ASR hypotheses, and to compare
them with the WFST-based methods. Unlike [7], we use a Turk-
ish statistical morph based model for both of the techniques.
Furthermore, we consider not just the first candidate but all
of the N-best candidates for training the CM, which was the
main difference between the MT and cohort conditions in [7].
Finally, we employ pre-trained generative language models,
which were shown to aid in obtaining linguistically plausible
word sequences [8]. In such a way, we will carefully control the
comparison between these confusion modeling methods, under
similar best-performing conditions.

Canonical DLM methods view the task as a structured pre-
diction problem, where the goal is to pick the best hypothesis
out of the N-best list. Another approach is the ranking method-
ology, where the list is reorganized such that better hypotheses
are shifted to the top. The perceptron algorithm has been popu-
larly applied in both forms in the literature [9, 10]. The ranking
perceptron has been shown to outperform the structured per-
ceptron for the supervised case [11], but in [12] where various
versions of the algorithm were applied on a WFST-based CM
setting, the differences between the algorithms were not as pro-
nounced. The second objective of our study is to show how
the two algorithms will behave under the MT-based CM set-
ting. For training we use a version known as the WER-sensitive
perceptron, first proposed in [13] and then applied in [8, 12].

The outline of the paper is as follows: In Section 2 we
present the two methods for generating artificial hypotheses,
based on WFST and MT CMs. Section 3 explains the algorith-
mic procedure to make use of this data in discriminative model
training and how the results are evaluated. The data and exper-
imental setup are given in Section 4 which are followed by the
experimental results in Section 5. We conclude the paper with
a discussion in Section 6 and a summary in Section 7.



2. Artificial hypothesis generation
In semi-supervised discriminative modeling, we use simulated
hypotheses as training examples. These examples need to be
formed in such a way that they resemble the outputs of a real
ASR system. One way to do that is to first learn some kind of
a confusion model which represents the variability in real out-
puts, and then apply this model on some reference text to gen-
erate examples with similar variability. In this study we use two
different techniques to obtain such a confusion model, one is
based on weighted finite-state transducers whereas the other is
based on statistical machine translation. Note that in both cases,
we train the confusion models by aligning all N-best hypotheses
to the reference transcription.

2.1. WFST-based confusion modeling

WFST-based confusion modeling technique analyzes ASR
N-best hypotheses to determine which language units are con-
fused with which others. Choosing morphs as the language unit,
we follow a similar hypothesis generation procedure as in [12].

The procedure starts with representing each N-best hypoth-
esis by morphs and aligning this morph sequence to the cor-
responding known reference sequence using the Levenshtein
(edit) distance. This alignment gives a list of morph pairs that
are confused by the ASR. The probability of confusion for a
specific morph pair can be computed as the frequency of their
match-ups in the list. The confusion model, denoted by CM, is
constructed as a WFST, the paired morphs being its input-output
pairs, and their probabilities being its weights. In implementa-
tion, to reduce computational costs, arcs having probability less
than 0.01 are discarded. Once the CM is learned, generation
of artificial hypotheses given an input string W is straightfor-
ward, and can be summarized with the following composition
sequence:

N -best(prune(W ◦ LW ◦ CM) ◦ GM )

First,W is converted into morphs by composing with the lexi-
con LW . Composing this result with CM gives the alternative
hypotheses in the form of a graph. Depending on the length of
the input string and the number of possible confusions available
in CM, the resulting confusion graph can be so large to pre-
vent efficient processing, and some of the confusions may even
be unfeasible or unmeaningful. In order to circumvent this we
prune this graph to the most probable 1000-best paths, and then
reweight its arcs by composing with a language model (LM)
transducer, GM . Two different LMs are used in our implemen-
tation: the GEN-LM is estimated from Turkish newswire data
collected from the Internet, represented by 5-grams with a vo-
cabulary of 76K morphs, and the ASR-LM is derived from the
ASR’s real outputs, represented by 4-grams out of 40K morphs.
Finally, N most probable paths are selected as the artificial hy-
potheses.

2.2. MT-based confusion modeling

We will compare the WFST-based confusion modeling tech-
nique with an approach that generates confusions using a sta-
tistical phrase-based machine translation framework. The MT
system used here, Moses [14], requires a word-aligned bilin-
gual parallel corpus of training data from which it builds the
grammars used to translate from one language to the other. In
our case, this parallel corpus consists of ASR N-best hypothe-
ses and their reference sequences, both of which are segmented
into morphs, just like the WFST-based setup. Because there

is no variation in the order of morphs in such data, we per-
form morph alignment using the Levenshtein algorithm as in
the WFST setup, rather than using a word alignment package
such as Giza++ [15].

These morph-level alignments serve as training data for
Moses, which extracts the phrase grammar, tunes the weights
of the feature functions for the phrase translation rules, and de-
codes additional reference transcriptions into ASR-like output
that can serve as training data for the DLM. Default settings
were used in Moses throughout with just a few exceptions that
enabled us to increase efficiency. Since we expect there to be
no reordering during translation, it was not necessary to build
a reordering model or to allow any distortion during decoding.
The language models used during tuning and decoding are the
same as the ones used in the WFST-based confusion modeling.

3. Training methods
In the training step, the training data represented by morph se-
quences are converted into numerical feature vectors, which are
then used to learn a discriminative model. It was denoted in
Section 1 that learning can be done with either a structured pre-
diction or a ranking setting. In our setup we use the linear mod-
eling framework to represent the simulated N-best lists as fea-
tures and apply a variant of the perceptron algorithm in both
settings to train the DLM.

3.1. Linear modeling framework

In this paper, we adopt the same linear modeling framework as
in [16]. Let x be the acoustic input and y its reference transcrip-
tion. Also let GEN(x) be a function which generates a set of
candidate hypotheses ỹ, given x. The pairs (x, ỹ) are mapped
by a representation Φ into a feature vector Φ(x, ỹ). The aim of
discriminative training is to optimize the model vector w which
contains the relative weights of the features in Φ. The model
score is defined by the inner product of w and Φ.

In semi-supervised training the acoustic input x does not
exist, therefore GEN(·) acts as the simulated hypothesis gener-
ator, taking the reference sentence y as its input. The output of
GEN(y) is expected to resemble the N-best list of an ASR sys-
tem which would have processed the acoustic utterance of that
sentence.

3.2. Structured WER-sensitive perceptron (WPer)

The perceptron is a popular algorithm applied to solve struc-
tured prediction problems. Its goal is to minimize the number of
misclassifications by picking the hypothesis among GEN(y)
which has the least number of word errors with respect to the
reference y. In this study we adopt a variant of this algorithm
called the WER-sensitive perceptron, which tries to minimize a
loss function related to the number of word errors rather than
the number of misclassifications [17]. The new loss function
is defined in terms of the edit distances between the reference
transcription and the hypotheses and is denoted by ∆(y, ỹ).

Figure 1 shows a pseudocode of the algorithm. It passes
over the training data multiple times. For each training example
i, yi (not to be confused with the y above) is the oracle hy-
pothesis which has the lowest WER, and zi is the hypothesis
which gives the highest score under the current model weights.
The model updates itself by favoring the features in yi and pe-
nalizing the ones in zi, with a sensitivity multiplier defined by
∆(yi, zi). In the end, the final weights are averaged for robust-
ness.



input set of training examples {yi : 1 ≤ i ≤ I},
number of iterations T
w = 0, wsum = 0
for t = 1 . . . T , i = 1 . . . I do
zi = argmaxz∈GEN(yi)

〈w,Φ(z)〉
w = w + ∆(yi, zi)(Φ(yi)−Φ(zi))
wsum = wsum + w

return wavg = wsum/(IT )

Figure 1: The WPer algorithm

3.3. Ranking WER-sensitive perceptron (WPerRank)

The structured perceptron algorithm defines the DLM task as
the separation of better examples from worse, by considering
only two of the hypotheses in the N-best list. It has been shown
in earlier studies ([11, 12]) that it is possible to make use of the
other hypotheses by considering this as a list ranking problem,
where the number of word errors provides the desired (target)
ranking.

The ranking approach states that for any two hypotheses a
and b from the same N-best list, if a has fewer word errors,
hence a higher rank (is closer to the top of the list) than b, then
the model score differences should be greater than some sepa-
ration threshold λ > 0:

ra � rb ⇐⇒ 〈w,Φ(a)−Φ(b)〉 > λ (1)

In this study we define λ as τ∆(ra, rb) where τ is a positive
margin multiplier and r denotes the rank of the hypothesis, and
update the model in a similar iterative fashion as shown in the
pseudocode in Figure 2.

3.4. Testing

Once training is completed, the final averaged model wavg can
be used to select the best scoring hypothesis among ASR out-
puts (GEN(x)) of some unseen acoustic data x via the follow-
ing expression:

y∗ = argmax
ỹ∈GEN(x)

{w0 logP (ỹ|x) + 〈wavg,Φ(ỹ)〉} (2)

Here we also include the recognition score now available from
the baseline recognizer, logP (ỹ|x), in the decision process. Its
scaling factor, w0, is optimized on a held-out set. Considering
all y∗, the overall WER represents the system performance.

4. Data and experimental setup
This study utilizes DLM in a Turkish LVCSR system which is
used to transcribe broadcast news. Our dataset consists of 194
hours of speech divided into 188 hours of training, 3.1 hours of
held-out (validation) and 3.3 hours of test subsets. These sub-
sets contain 105355, 1947 and 1784 utterances, respectively.
The recognizer outputs are organized in 50-best lists and repre-
sented by morph unigrams.

In our experiments, the training subset is divided into two
equal parts. The first part (t1) is used to construct the confusion
models, which are then applied on the reference transcriptions
of the second part (t2) to generate artificial N-best lists. These
lists constitute the training examples of the DLM system.

The feature vector Φ consists of morph unigram counts.
In the real ASR N-best lists of t1 there are about 38K unique
morphs, which sets the upper limit on the number of morphs
included in the confusion model.

input set of training examples {yi : 1 ≤ i ≤ I},
number of iterations T , a positive margin multiplier τ ,
a positive learning rate η, a positive decay rate γ
w = 0, wsum = 0
for t = 1 . . . T do

for i = 1 . . . I do
for (a, b) ∈ GEN(yi) do

if ra � rb & 〈w,Φ(a)−Φ(b)〉 < τ∆(ra, rb) then
w = w + η∆(ra, rb)(Φ(a)−Φ(b))

wsum = wsum + w
η = η · γ

return wavg = wsum/(IT )

Figure 2: The WPerRank algorithm

The SRILM toolkit [18] is used for building the language
models. The WFST-based confusion system is implemented by
the OpenFST library [19] while the MT-based system is imple-
mented by using the Moses SMT tool [14]. The parameters τ , η
and γ are optimized on the held-out set. The generative baseline
and oracle rates are 22.9% and 14.2% for the held-out set, and
22.4% and 13.9% for the test set, respectively.

5. Experimental results
In our first set of experiments, we investigate the effectiveness
of the artificial data generated by the WFST- and MT-based con-
fusion models, presented in Section 2. For both techniques, the
CM is trained by aligning the ASR N-best outputs from t1 with
their reference transcriptions using the Levenshtein distance,
and language model reweighting is applied using ASR-LM and
GEN-LM. 100 sentences from the training corpus are selected
as the development set for the MT-based model. Finally, the
CMs are applied on the reference transcriptions of t2 to gener-
ate 50-best lists.

We train the discriminative models with the WPer and
WPerRank algorithms explained in Section 3. The algorithms
make 20 and 10 passes over the training data, respectively. The
parameter w0 is optimized on the held-out set. Table 1 reports
the system performances in terms of WER on the held-out set,
with respect to the confusion modeling technique and the lan-
guage model employed.

Table 1: Held-out WER(%), Baseline: 22.9%

Confusion Language WPer WPerRankModel Model

WFST ASR-LM 22.8 22.7
GEN-LM 22.7 22.7

MT ASR-LM 22.5 22.3
GEN-LM 22.4 22.3

The interpretation of Table 1 is threefold: First of all, re-
gardless of the language model or the algorithm, the WERs of
the MT-based CM technique are lower than those of the WFST,
which suggests that the artificial examples generated by the
MT model are more appropriate for semi-supervised training.
The level of improvement is about 0.3% for WPer and even
more for WPerRank (the latter being statistically significant at
p < 0.05). Second, WPerRank provides remarkably lower
WER than WPer with MT, on the contrary to WFST where the
difference is insignificant (This latter observation is consistent
with [12]). Finally, for both choices of the confusion model or
the training algorithm, GEN-LM seems to yield slightly better
WER with respect to ASR-LM.



As a second experiment, we consider whether combining
the WFST and MT training examples will provide any further
system gains. Table 2 shows the error rates of individual and
combined results with the GEN-LM language model, this time
also including the test set performance. The supervised case in
which real ASR outputs of t2 are used for training the DLM is
also given for comparison.

Table 2: Held-out and test WER(%) with GEN-LM

Confusion WPer WPerRank
Model hld tst hld tst
WFST 22.7 22.1 22.7 22.3

MT 22.4 22.3 22.3 21.8
WFST + MT 22.3 22.0 22.2 21.9

Real ASR 22.2 22.0 21.9 21.6

We see from Table 2 that combining simulated training data
of two CMs does not result in a significant decrease in WER on
the held-out set. On the other hand, there is a 0.3% decrease
with WPer on the test set, which suggests that the learned dis-
criminative model is more generalizable to unseen data. Fur-
thermore, the WER is as low as the one achieved using the real
ASR hypotheses for training.

Please note that the combination scheme used in this exper-
iment was to simply concatenate the training examples of both
sources. Other complicated methods like fusion strategies based
on the model (constructing an intermediate model by averag-
ing the weights of two models), score (choosing the hypothesis
which is more confidently selected by any of the two models),
or outputs (doubling the N-best lists) have also been tried, and
were observed to yield very similar test set WER as the one
reported.

6. Discussion
In order to understand why the examples generated by the MT-
based confusions are a better match for semi-supervised DLM
training and why WPerRank provides lower WER than WPer
in general, we look at the variability of artificially generated
examples and the number of utilized features.

It was noted earlier that there are about 38K unique morphs
in the N-best lists of t1, which is used for training the con-
fusion model. The N-best lists generated by the MT con-
fusions contain more than 28K morphs whereas the ones of
the WFST-technique contain only about 22K. The number of
unique morphs in real ASR outputs of t2 is also 38K (not all
of the features are the same as t1). Considering occurrence
frequencies of these features, the cosine similarity between the
N-best sets can be seen in Table 3.

Table 3: Cosine similarities between simulated hypotheses

WFST Real
MT 0.994 0.998
Real 0.996

More than 20K features are shared by the WFST and MT
systems. There are about 7K unique morphs in the MT simula-
tions which do not exist in WFST’s, as opposed to only about
1K for vice versa. Based on these evaluations we understand
that the MT-based artificial examples have more variability than
the WFST-based, and are much closer to what the real ASR out-
puts would look like for the same reference text.

We now look at the number of utilized features after training
with both of the algorithms, which is summarized in Table 4.

Table 4: Number of utilized features (GEN-LM)

CM WPer WPerRank
WFST 10,922 14,227

MT 15,320 24,597
WFST + MT 14,914 24,887

Real ASR 20,469 37,373

Table 4 suggests that there is a positive correlation between
the system performance and the number of features utilized.
More features are utilized by WPerRank than by WPer since
the former considers each and every hypothesis of the N-best
list, rather than only two.

7. Conclusions
In this paper we applied semi-supervised discriminative lan-
guage modeling techniques to improve Turkish LVCSR perfor-
mance, and compared two artificial data generation techniques,
one based on the WFSTs and the other on MT confusions.
Using the artificial data as training examples, we trained our
models with the structured prediction and ranking variants of
the perceptron algorithm which is sensitive to the number of
word errors. We showed that the MT simulations provide a bet-
ter basis for training the DLM, and that a WER reduction of
more than 0.3% can be obtained using both of the algorithms,
the ranking version performing slightly better. We also found
out that fusing the WFST and MT confusions under different
strategies yields a small improvement, closer to what the sys-
tem would give if real ASR data were used.

The variability of the features seems to be an important fac-
tor in system performance, and in the future we intend to in-
vestigate more on the ways which improve variability within
the artificially generated N-best lists. As another direction, we
would like to follow a similar approach as in [20] to explore the
performance of our system in completely unsupervised condi-
tions, where we do not even have the reference text to train the
confusion models.
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