
Natural Language Engineering 10 (1): 1–24. c© 2004 Cambridge University Press

DOI: 10.1017/S1351324903003152 Printed in the United Kingdom

1

Robust garden path parsing

BRIAN ROARK
AT&T Labs - Research, 180 Park Avenue, Building 103,

Room E145, Florham Park, NJ 07932-0971, USA

e-mail: roark@research.att.com

(Received 23 April 2002; revised 17 September 2002)

Abstract

This paper presents modifications to a standard probabilistic context-free grammar that

enable a predictive parser to avoid garden pathing without resorting to any ad-hoc heuristic

repair. The resulting parser is shown to apply efficiently to both newspaper text and telephone

conversations with complete coverage and excellent accuracy. The distribution over trees is

peaked enough to allow the parser to find parses efficiently, even with the much larger search

space resulting from overgeneration. Empirical results are provided for both Wall St. Journal

and Switchboard test corpora.

1 Introduction

Roark (2001a) presented a broad-coverage incremental parser that was used effect-

ively as a probabilistic language model for speech recognition. While that parser

achieved high coverage, it was not robust, since it failed to find a parse for some small

percentage (around one percent) of strings in the Wall St. Journal test set, by virtue

of its incremental pruning strategy. This paper outlines a modified probabilistic

model that results in a robust parser, despite the ‘garden path’ incremental parsing

approach. This model is shown is provide higher accuracy and complete coverage

without an undue efficiency burden. The parser is then applied to noisier strings

taken from the Switchboard corpus of telephone conversations, and is shown to

provide high accuracy and complete coverage in this domain as well.

In the case of the Wall St. Journal, the failure to parse in Roark (2001a) was quite

frequently due to rare uses of punctuation that happen not to have been observed

in particular syntactic contexts in the training corpus. More generally, many of the

rules in the treebank are very flat1, so that long sequences of children categories

are observed, with none of the intermediate constituents that would be observed in

more detailed hierarchical structures. For example, noun phrases can consist of a

determiner followed by a sequence of nouns, adjectives and other ‘nouny’ things, in

nearly every permutation. Given limited training data, the probability of observing

1 See the bracketing guidelines in Bies, Ferguson, Katz, MacIntyre, Tredinnick, Kim,
Marcinkiewicz and Schasberger (1995) for details on how the Penn Treebank was annotated.

2 B. Roark

all possible permutations is zero. We will discuss a method of smoothing to allow

for unseen rules to be assigned a probability.

To give an idea of how much of a problem this might be, of the 15 thousand

or so PCFG rules that can be induced from the Penn Wall St. Journal Treebank

in the standard way, over 3600 of these are NP rules with only pre-terminals on

the right-hand side. The pre-terminal categories on the right-hand side of these

base NPs include determiners, adjectives, common and proper nouns, gerunds, and

punctuation, among other things. While there are some ordering constraints (e.g.

determiners occur typically first and only once), productive noun compounding and

variations in punctuation result in many possible combinations. Some of these are

observed, but many are not. For example, the following rule occurs in the training

data with a probability of approximately 0.00000285:

NP→ DT JJ JJ NN NN NNS(1)

The POS tag DT is for determiners, JJ for adjectives, NN for singular common

nouns, and NNS for plural common nouns, so this rule would cover something

like‘the delicious black duck beak soups’. Unfortunately, the following two rules

are not observed in the training corpus, and thus have a probability of zero with

the current grammar estimation technique:

NP→ DT JJ JJ JJ NN NN NNS(2)

NP→ DT “ JJ ” JJ NN NN NNS(3)

Hence, there is no way to cover, in a flat NP rule, something like ‘the so-called

delicious black duck beak soups’, nor something like ‘the “delicious” black duck

beak soups’. This may be argued to be a short-coming of the grammar formalism,

and that may be true; more hierarchical structure would help with some of this,

to the extent that there would be more exemplars of shorter rules.2 However, this

is the grammar that has been provided by the annotators via the treebank, and

the grammar estimation techniques that have been used up to now do not provide

sufficient probability to unseen rules of the sort we have given in the example.

A method that has been adopted for treebank parsing in the past (Collins 1997;

Charniak 2000) is what Charniak has termed a Markov grammar. The basic idea

is to make a Markov assumption about the dependencies between the children,

i.e. that the probabilities of children are independent of their siblings when the

distance between them is beyond some fixed n. This method has been noted to

improve the accuracy of the above mentioned statistical parsers, but it also serves

to increase the coverage.

In the next section, we will briefly outline the parser and the model from Roark

(2001a). We then motivate and describe the changes to the model, followed by

empirical results.

2 Johnson (1998) showed, however, that the perhaps more linguistically well-motivated
structures may not be as effective as flat structures for modeling the dependencies, since
the additional level in the hierarchy carries an independence assumption that appears to
be false in general.

Robust garden path parsing 3

Top-down-parser(S†,MG, w = w0 . . . wn〈/s〉)
1 i← 0

2 S = S †$ � Let S be the stack, and $ the end-of-stack marker

3 repeat

4 � let X be the top stack symbol on S
5 pop X from S
6 if X ∈ T

7 then if X = wi

8 then i← i + 1

9 else error

10 else if MG[X,wi] = X → Y1 . . . Yk

11 then push Y1 . . . Yk onto S
12 output(X → Y1 . . . Yk)

13 else error

14 until X = $

15 if wi �= 〈/s〉 � if look-ahead is not the end-of-string

16 then error

Fig. 1. A deterministic top-down parsing algorithm, modified from Aho, Sethi, and Ullman

(Algorithm 4.3), taking a start symbol S†, a parsing table MG, and an input string w as

arguments. The symbol � precedes comments.

2 Top-down probabilistic parsing

2.1 Background

This parser is essentially a stochastic version of the top-down parser described

in Aho, Sethi and Ullman (1986). To present the parser, we first present their

deterministic algorithm, then discuss how to handle the non-determinism. The parser

will be presented as taking strings of words as input, but it can also be applied to

strings of POS tags, with the obvious changes to look-ahead calculations.

A CFG G= (V ,T , P , S†), consists of a set of non-terminal symbols V , a set of

terminal symbols T , a start symbol S† ∈ V , and a set of rule productions P of

the form: A→ α, where A ∈ V and α ∈ (V ∪ T)∗. Deterministic top-down parsing

(see the algorithm3 in Figure 1) is effected via a parsing table MG, which takes a

non-terminal category X and the look-ahead word (the next word in the string) wi,

and returns either a rule expanding the non-terminal or a fail symbol. Consider the

set of productions from a very simple context-free grammar4:

S→ NP VP(4)

NP→ DT NN(5)

VP→ V NP(6)

DT→ the(7)

NN→ moon(8)

3 Algorithms in this paper are formatted according to the style in Corman, Leiserson and
Rivest (1990).

4 We consider rules expanding pre-terminals to terminals as rules in the grammar, rather
than a lexicon separate from the productions.

4 B. Roark

NN→ sun(9)

V→ is(10)

This grammar is very limited, but can handle strings like ‘the moon is the moon’.

The parsing table will have an entry for the pair MG(S,the) = S → NP VP,

since rule 4 provides the only possible path, given the above grammar, from S to

the. Given a grammar G, a parsing table MG can be built, by finding, for every

non-terminal/terminal pair, all rules that can be the first step in a path from the

non-terminal to the terminal. If a parsing table can be built where each entry in the

table is unique, i.e. in which there is no ambiguity about which rule to apply with

any pair (such as the above grammar), then the grammar is said to be LL(1), where

LL stands for left-to-right and leftmost, and the 1 means that there is one terminal

item in look-ahead. With such a parsing table, one can deterministically parse the

input top-down, with the algorithm in Figure 1.

Suppose that we were to enrich our small toy grammar with a couple of rules to

handle NP modification with prepositional phrases, to be able to handle strings like

‘the moon is the sun of the night’. The rules might look something like:

NP→ NP PP(11)

PP→ IN NP(12)

IN→ of(13)

NN→ night(14)

With the introduction of these rules, the grammar is no longer LL(1), because for

certain non-terminal/terminal pairs, there is more than one rule in the table. For

example, in this case MG(NP,the) has two entries: rules 5 and 11. Grammars sufficient

to cover freely occurring strings of English are typically massively ambiguous, so

any top-down approach must be able to handle such non-determinism.

Our basic approach will be to keep many separate derivations, each of which

follows a search path akin to the deterministic parser just outlined. This will

involve assigning each partial derivation a figure-of-merit , or a score of how good

the derivation is. The goal is to work on just the promising ones, and discard

the rest. Finding an appropriate figure-of-merit can be difficult, because of issues of

comparability. Two competing analyses may be at different points in their derivation,

so this figure-of-merit must be able to, in a sense, normalize the scores with respect to

the extent of the derivation. This can be done by including in the score the probability

of the derivation to that point, as well as some estimate of how much probability the

analysis is going to spend to extend the derivation. We do not compare derivations

with different terminal yields, but rather extend the set of competing

derivations to the current word before moving on to the next word; hence the

derivations are more comparable than they might otherwise be. Each derivation

probability is monotonically decreasing, i.e. every rule added to the derivation

decreases its probability; yet each rule also brings the existing derivation closer

to the look-ahead word, so that the amount of probability that will have to be

spent, for promising analyses, to reach the look-ahead word will offset the drop in

probability. Thus attention is appropriately focused on these promising derivations.

Robust garden path parsing 5

2.2 Algorithm

To introduce our parsing algorithm, we will first define candidate analysis (i.e. a

partial parse), and then a derives relation between candidate analyses. We will then

present the algorithm in terms of this relation.

The input to the parser is a string wn
0 and a PCFG G5. The parser’s basic

data structure is a priority queue of candidate analyses. A candidate analysis

C = (D,S, PD, F, w
n
i) consists of a partial derivation D, a stack S, a derivation

probability PD , a figure-of-merit F , and a string wn
i remaining to be parsed. The first

word in the string remaining to be parsed, wi, we will call the look-ahead word. The

derivation D consists of a sequence of rules used from G. The stack S contains a

sequence of non-terminal symbols that need to be accounted for, and an end-of-stack

marker $ at the bottom. The probability PD is the product of the probabilities of

all rules in the derivation D. F is the product of PD and a look-ahead probability,

LAP(S, wi), which is a measure of the likelihood of the stack S rewriting with wi

at its left corner. Exactly how the LAP is calculated is described below.

We can define a derives relation, denoted ⇒, between two candidate analyses as

follows. (D,S, PD, F, w
n
i)⇒ (D′,S′, PD′ , F

′, wn
j) if and only if6

(i) D′ = D+A→ β

(ii) S = Aα$;

(iii) either S′ = βα$ and j = i

or β = wi, j = i + 1, and S′ = α$;

(iv) PD′ = PDP(A→ β); and

(v) F ′ = PD′LAP(S′, wj).

The parse then begins with a single candidate analysis on the priority queue:

(〈〉,S†$,1,1,wn
0). It then proceeds as follows. The top ranked candidate analysis,

C = (D,S, PD, F, w
n
i), is popped from the priority queue. If S = $ and wi = 〈/s〉,

then the analysis is complete. Otherwise, all C ′ such that C ⇒ C ′ are pushed onto

the priority queue.

We implement this as a beam search. For each word position i, we have a separate

priority queue,Hi, of analyses with look-ahead wi. When there are ‘enough’ analyses

by some criteria (which we will discuss below) on priority queueHi+1, all candidate

analyses remaining onHi are discarded. Since wn = 〈/s〉, all parses that are pushed

ontoHn+1 are complete. The parse onHn+1 with the highest probability is returned

for evaluation. In the case that no complete parse is found, a partial parse is returned

and evaluated. Figure 2 presents the algorithm formally.

The LAP is the probability of a particular terminal being the next left-corner of a

particular analysis. The terminal may be the left-corner of the top-most non-terminal

5 A PCFG is a CFG with a probability assigned to each rule, such that the probabilities of
all rules expanding a given non-terminal sum to one; specifically, each right-hand side has a
probability given the left-hand side of the rule. An additional condition for well-formedness
is that the PCFG is consistent or tight, i.e. there is no probability mass lost to infinitely
large trees.

6 The + in (i) denotes concatenation. To avoid confusion between sets and sequences, ∅ will
not be used for empty strings or sequences, rather the symbol 〈〉 will be used. Note that
the script S is used to denote stacks, while S† is the start symbol.

6 B. Roark

above-threshold(C = (D,S, PD, F, w
n
i 〈/s〉),Hi+1, γ, f)

1 Hi+1[0] = (D′,S′, PD′ , F
′, wn

i+1〈/s〉) � Heap provides the best scoring entry

2 if F > PD′ ∗ f(γ, |Hi+1|)
3 then return TRUE

4 else return FALSE

ND-Top-down-parser(G = (V ,T , P , S†),⇒, w = w0 . . . wn〈/s〉, γ, f)

1 i← 0

2 Hi[0]← (〈〉, S †$, 1, 1, wn
0〈/s〉) � Let Hi be the priority queue for wi

3 for i← 0 to n

4 do while above-threshold(Hi[0],Hi+1, γ, f)

5 do C ←Hi[0] = (D,S, PD, F, w
n
i 〈/s〉)

6 pop C from Hi

7 � let X be the top stack symbol on S
8 if X ∈ T

9 then ∀C ′ such that C ⇒ C ′ : push C ′ onto Hi+1

10 else ∀C ′ such that C ⇒ C ′ : push C ′ onto Hi

11 � At the end of the string, we must empty the stack to complete the derivation

12 while above-threshold(Hn+1[0],Hn+2, γ, f)

13 do C ←Hn+1[0] = (D,S, PD, F, 〈/s〉)
14 pop C from Hn+1

15 � let X be the top stack symbol on S
16 if X = $

17 then push C onto Hn+2

18 else ∀C ′ such that C ⇒ C ′ : push C ′ onto Hn+1

19 if empty(Hn+2[0]) � if no analysis made the final heap

20 then error

Fig. 2. A non-deterministic top-down parsing algorithm, taking a context-free grammar G, a

derives relation ⇒, an input string w, a base beam-factor γ, and a threshold function f as

arguments. The symbol ⇒ denotes our derives relation defined above. The symbol � precedes

comments.

on the stack of the analysis or it might be the left-corner of the nth non-terminal,

after the top n − 1 non-terminals have rewritten to ε. Of course, we cannot expect

to have adequate statistics for each non-terminal/word pair that we encounter, so

we smooth to the POS. Since we do not know the POS for the word, we must sum

the LAP for all POS labels7.

For a PCFG G, a stackS = A0 . . . An$ (which we will write An
0$) and a look-ahead

terminal item wi, we define the look-ahead probability as follows:

LAP(S, wi) =
∑

α∈(V∪T)∗

PG(An
0

∗⇒ wiα)(15)

We recursively estimate this with two empirically observed conditional probabilities

for every non-terminal Ai: P̂(Ai
∗⇒ wiα) and P̂(Ai

∗⇒ ε). The same empirical

probability, P̂(Ai
∗⇒ Xα), is collected for every pre-terminal X as well. The LAP

7 Equivalently, we can split the analyses at this point, so that there is one POS per analysis.
If the POS label is given by the input string, then, obviously, this does not need to occur.

Robust garden path parsing 7

approximation for a given stack state and look-ahead terminal is:

PG(An
j

∗⇒ wiα) ≈ PG(Aj
∗⇒ wiα) + P̂(Aj

∗⇒ ε)PG(An
j+1

∗⇒ wiα)(16)

where

PG(Aj

∗⇒ wiα) ≈ λAj
P̂(Aj

∗⇒ wiα) + (1− λAj
)
∑
X∈V

P̂(Aj

∗⇒ Xα)P̂(X → wi)(17)

The λAj
mixing coefficients for interpolation are a function of the frequency of the

non-terminal Aj , and are estimated in the standard way using held-out training data

(Jelinek and Mercer 1980).

Unknown words are dealt with as follows. Each word in the held-out corpus is

assigned an unknown word category, based on certain features of the word. For

example, if the word ends in ‘s’ it goes into one category; if it ends in ‘ing’ it goes

in another, etc. A certain amount of probability mass is reserved for the occurrence

of these unknown categories as children of the particular part-of-speech tags with

which they were observed. Then, when an unknown word is observed in the test set,

it is assigned an unknown word category, and the parser treats the word as that

category.

The beam threshold at word wi is a function of the probability of the top ranked

candidate analysis, Hi+1[0], on priority queue Hi+1 and the number, |Hi+1|, of

candidate analyses on Hi+1. The basic idea is that we want the beam to be very

wide if there are few analyses that have been added to Hi+1, but relatively narrow

if many analyses have been advanced. If p̃ is the probability of the highest ranked

analysis onHi+1, then all other analyses are discarded if their probability falls below

p̃f(γ, |Hi+1|), where γ is an initial parameter, which we call the base beam factor . For

the results that will be presented in this paper, γ was 10−11, unless otherwise noted,

and f(γ, |Hi+1|) = γ|Hi+1|3. This function has the effect of having a very wide beam

early, but closing fast. If 100 analyses have already been pushed onto Hi+1, then

a candidate analysis must have a probability above 10−5p̃ to avoid being pruned.

After 1000 candidate analyses, the beam has narrowed to 10−2p̃. There is also a

maximum number of allowed analyses on Hi, in case the parse fails to advance an

analysis to Hi+1. For this study, the maximum was 10,000.

Each derivation step in our top-down parser carries with it the derivation to that

point, which can be used to provide relevant conditioning information for future

steps in the derivation. We do not use the entire left-context to condition the rule

probabilities, but rather ‘pick-and-choose’ which events in the left-context we would

like to condition on. One can think of the conditioning events as functions, which

take the partial tree structure as an argument and return a value, upon which the

rule probability can be conditioned. Each of these functions is an algorithm for

walking the provided tree and returning a value. For example, suppose that we want

to condition the probability of the rule A→ α. We might write a function that takes

the partial tree, finds the parent of the left-hand side of the rule and returns its node

label. If the left-hand side has no parent, i.e. it is at the root of the tree, the function

returns the null value (NULL). We might write another function that returns the

non-terminal label of the closest sibling to the left of A, and NULL if no such node

8 B. Roark

exists. We can then condition the probability of the production on the values that

were returned by the set of functions.

The parser and model that we have presented in this section is that from Roark

(2001a). For more detail about the specific probabilistic model, we refer the reader

to that paper. For the purposes of this paper, we merely point out that the base

probability for this parser is the simple PCFG probability, i.e. the probability of

the right-hand side given the left-hand side. With the maximum likelihood (relative

frequency) estimator for this PCFG given the training corpus, the probability of

an unseen production is zero. We would like to smooth the probabilities in such a

way that unseen productions are given some probability mass. The next section will

detail one way to do this.

3 Smoothed grammars

3.1 Markov grammars

The basic idea behind smoothing the production probabilities is to forget some of

the previous children of a constituent when estimating the probability of the next

child. Perhaps the easiest way to see how this would work in practice is through

the chain rule. To simplify the notation, let us assume that all rules in the grammar

are of the form A → B0 . . . Bk , and that B0 is always some start symbol, and Bk is

always some stop symbol. Since every rule begins with B0, its probability is always

one. A PCFG assigns probability to a rule as follows:

P(A→ B0 . . .Bk) =

k∏
i=1

P(Bi|A,B0, . . . ,Bi−1)(18)

A Markov assumption of order n would change each component of the previous

equation as follows:

P(Bi|A,B0, . . . ,Bi−1) = P(Bi|A,Bi−n, . . . ,Bi−1)(19)

This results in a new decomposition of the probability of a PCFG rule. For example,

suppose we chose a Markov grammar of order 1:

P(A→ B0 . . .Bk) =

k∏
i=1

P(Bi|A,Bi−1)(20)

To get back to our unobserved rules above, the probabilistic grammar estimation for

a Markov grammar of order 1 no longer asks how frequently the entire sequence of

children has been observed with that parent, but rather how frequently each child

has been observed with that previous sibling and that parent.

Another way to see how this might work is via a tree or grammar transformation.

Figure 3 shows an NP constituent as it undergoes two transformations. The first

is left-factorization, which is a binarization transform that preserves the probability

distribution over productions8. A smoothed Markov grammar of order n can be

8 See Roark (2001a) for more detail on this left-factorization transform.

Robust garden path parsing 9

(a)

NP

DT

a

JJ

hot

NN

cross

NN

bun

(b)

NP

DT

a

NP-DT

JJ

hot

NP-DT,JJ

NN

cross

NP-DT,JJ,NN

NN

bun

(c)

NP

DT

a

NP-DT

JJ

hot

NP-JJ

NN

cross

NP-NN

NN

bun

Fig. 3. Noun phrase structures: (a) original flat representation; (b) left-factored tree; and

(c) Markov grammar, order 1.

thought of as one in which the non-terminals created by left-factorization are

modified to contain only the last n children of the constituent.

The move to estimating PCFG rule probabilities in this manner simplifies some

things and complicates others. We will be able to do away with keeping track of

specific rules, and simply evaluate the probability of subsequent children as we grow

the trees, conditioned on events in the left-context as before, now including some

number of previous children in the production. Complicating matters slightly is the

fact that constituent head identification is now no longer tied to specific rules, and

this will force us to include head identification in our probabilistic model.

We have adopted, following Charniak (2000), a smoothed third-order Markov

grammar. This means that a certain amount of probability mass (depending on the

smoothing parameters) is reserved for arbitrary permutations of children that have

been observed under a particular parent. In estimating the grammar in this way,

we have moved from a PCFG with some 15,000 possible productions to one with

an infinite number of possible flat productions, i.e. after de-transformation. At each

point in the rule expansion, some probability mass is reserved for producing any

child that has been observed with that parent. This process can continue indefinitely.

Note, however, that the model as it is here does not absolutely prevent garden

pathing with a predictive parser. Suppose that no category on the stack of an

analysis has been observed with a child that can have the next input item at its

left-corner. Then that analysis will fail to incorporate the next word. We can allow

for any non-terminal to be emitted as the child of any other (non-POS) non-terminal

by simply adding some ε to the count of all possible parent-child pairs. We refer

to models that do not add this ε as Smoothed (std), and those that do add an ε

(which cannot garden path) as Smoothed (any).

3.2 Probability model

Equation 20 shows a markov grammar of order 1. In this case, the probability of

each child is conditioned on the parent category (i.e. the left-hand side of the CFG

rule) and the previous child of that parent. Because of the top-down orientation

10 B. Roark

of our parsing algorithm, each rule expansion will occur within a fully connected

partial parse tree, which will contain all ancestors and siblings to the left of the

current category. Since this information is already explicit for the given parse, there

is nothing to prevent us conditioning the probability of each child on other features

of this left-context. For example, we could choose to condition the probability of

the child on not just the left-hand side and previous children of the left-hand side,

but also on, say, the parent category of the left-hand side.

In Roark (2001a), the conditional probability was based on a PCFG rule

identifier, and other features from the context were added to this. Our conditional

probability model is simplified compared with that model, given the uniformity of

the conditioning events. Instead of beginning with a PCFG rule identifier, which

encodes a composite of the parent and the previous children (recall the non-

terminals introduced by left-factorization), then continuing with values returned

from tree-walking functions, now all of the conditioning events can be encoded as

values returned from tree-walking functions. In addition, our look-ahead probability

will also be defined in terms of these tree-walking functions, and our new head

probability will also be defined in this way. Hence, our grammar estimation routine

now involves simply taking a given set of functions and performing maximum

likelihood estimation of the conditioned variable given the values returned from

these conditioning functions. This is the same for all three components of our

model.

To make this explicit, let us briefly define a small set of treewalking functions,

and give the conditional probability models used in the trials that will follow. These

functions take a pointer to a node in the tree as an argument. Each node in the

tree contains, as a part of its structure, pointers to: (i) its label; (ii) its parent

node (parent); (iii) its first child node (child); (iv) its sibling to the left (leftsib);

and (v) its designated head child node (head). The function then moves the node

pointer to other locations in the tree, and returns a value from the final position

of the pointer. We use these functions as follows: hypothesize a new arc and node

in the tree, and pass the function a pointer to the new node. Hence all values

returned from the functions are relative to the newly hypothesized node, the label

of which is the conditioned variable. Most of the functions are given additional

parameters, so each individual function will be identified by a function name and

up to two parameter values. Figures 4 and 5 give the algorithms for the tree-walking

functions.

Note that each function returns a single value, but these values are combined

as sets of conditioning variables, so that together they can define more complex

conditioning contexts. In fact, we can extract values from arbitrary positions in the

left-context, and hence create sets of conditioning variables that encode arbitrarily

complex tree fragments. The question arises as to where the particular tree-walking

functions come from, and how their optimal combination is determined. This is

a very interesting issue, and one deserving of further research. For this paper, we

used the same features as were used in Roark (2001a) – excepting the difference

in simple PCFG versus Markov grammar encoding – which were chosen though a

combination of intuition and empirical trials on a development corpus.

Robust garden path parsing 11

PAR-SIB(node, m, n)

1 for i← 1 to m � Move up m nodes

2 do if node �= NULL

3 then node← node.parent

4 for i← 1 to n � Move left n nodes

5 do if node �= NULL

6 then node← node.leftsib

7 if node �= NULL

8 then return node.label

9 else return NULL

LEFTMOST-PS(node, m, n)

1 if node.leftsib �= NULL � Only for leftmost children

2 then return NULL

3 else return PAR-SIB(node, m, n)

LEX-HEAD(node, m)

1 if node �= NULL

2 then node← node.head � Go to a node’s head child

3 while node �= NULL and node.child �= NULL � Until node is a leaf

4 do node← node.head

5 for i← 1 to m � Move up m nodes

6 do if node �= NULL

7 then node← node.parent

8 if node �= NULL

9 then return node

10 else return NULL

CURR-HEAD(node, m)

1 if node = NULL

2 then return NULL

3 headnode← LEX-HEAD(node.parent, m)

4 if headnode �= NULL � If parent’s head has been found, return it

5 then return headnode.label

6 else headnode← LEX-HEAD(node.leftsib, m) � Else, left-sibling head

7 if headnode �= NULL

8 then return headnode.label

9 else return NULL

Fig. 4. Tree-walking functions to return conditioning values for the probability model. node

is a pointer to a node in the tree, which is a data structure with five fields: label which is a

pointer to a character string; and parent , child , leftsib, and head , which are pointers to other

nodes in the tree. The symbol � precedes comments.

Figures 6 and 7 give the conditional probability models for non-POS expansions

and POS expansions, respectively. Each model is a linear order of functions, and

the probability of the conditioned event is conditioned on the values returned by

these functions. The figures also provide two example trees each, with a newly

hypothesized node (the conditioned variable), and the values that would be returned

from each of the tree-walking functions. The conditional probability estimate with

n features is the linear interpolation of the MLP relative frequency estimate for n

12 B. Roark

LEFT-CCOMMAND(node)

1 while node �= NULL and node.leftsib = NULL � node is leftmost child

2 do node← node.parent

3 if node = NULL

4 then return NULL

5 parenthead← node.parent.head

6 if parenthead �= NULL � Go to head of constituent, if found

7 then node← parenthead

8 else node← node.leftsib � Else, left-sibling

9 return node

CC-HEAD(node, m, n)

1 for i← 1 to m

2 do if node �= NULL

3 then node← LEFT-CCOMMAND(node)

4 return CURR-HEAD(node, n)

LEFTMOST-CCH(node, m, n)

1 if node.leftsib �= NULL � Only for leftmost children

2 then return NULL

3 else return CC-HEAD(node, m, n)

CONJ-PARALLEL(node)

1 if node �= NULL and node.leftsib = NULL

2 then node← node.parent

3 if node = NULL

4 then return NULL

5 thislabel ← node.label

6 siblabel ← PAR-SIB(node, 0, 1)

7 if siblabel = ‘CC’ � If parent is being conjoined

8 then node← node.leftsib

9 while node �= NULL node.label �= thislabel

10 do node← node.leftsib � Find first category with same label

11 if node �= NULL

12 then node← node.child

13 return node.label � Return label of first child of conjoined node

14 return NULL

Fig. 5. More tree-walking functions to return conditioning values for the probability model.

node is a pointer to a node in the tree, which is a data structure with five fields: label which

is a pointer to a character string; and parent , child , leftsib, and head , which are pointers to

other nodes in the tree. The symbol � precedes comments.

features and the conditional probability estimate with n − 1 features. The order in

which these models is presented is the order of interpolation.

The second part of the probability model is the probability that the previous child

of the constituent is the head of the constituent. There are three possible cases:

(i) the head has already been found to the left of the previous child; (ii) the previous

child is the head; or (iii) none of the previous children is the head of the constituent.

For example, when the new node is built in the Figure 6a, the probability for

(i) above is zero, since the previous child of the NP is the first child; the probabilities

Robust garden path parsing 13

(a)

S

NP

DT

the

NN

cop

VP

VBD

saw

NP

NP

DT

a

NN

thief

PP

(b)

S

NP

DT

the

NN

cop

VP

VBD

saw

NP

DT

a

NN

thief

PP

Conditioning Function Description Value Returned

Tree (a) Tree (b)

0 PAR-SIB(node,1,0) Left-hand side (LHS), i.e. parent NP VP

1 PAR-SIB(node,0,1) Last child of LHS NP NP

2 PAR-SIB(node,0,2) 2nd last child of LHS NULL VBD

3 PAR-SIB(node,0,3) 3rd last child of LHS NULL NULL

4 PAR-SIB(node,2,0) Parent of LHS (PAR) VP S

5 PAR-SIB(node,1,1) Last child of PAR VBD NP

6 PAR-SIB(node,3,0) Parent of PAR (GPAR) S NULL

7 PAR-SIB(node,2,1) Last child of GPAR NP NULL

8 CONJ-PARALLEL(node) First child of conjoined category NULL NULL

9 CURR-HEAD(node,0) Lexical head of current constituent thief saw

Fig. 6. Two trees, to illustrate the tree-walking functions for non-POS expansions. The newly

hypothesized node in trees (a) and (b) is the ‘PP’. The labels of these new nodes are the

conditioned variables.

for (ii) and (iii) must be estimated. The conditioned variable is one of the three

above alternatives. The head probability model that we used in these trials consisted

entirely of values returned by the PAR-SIB function with the following parameters:

(0,1), (1,0), (0,0), (0,2), and (0,3). In words, we are conditioning the head location

on: (0) the label of the previous child; (1) the left-hand side (i.e. parent label of

the newly hypothesized node); (2) the label of the newly hypothesized node; (3) the

label of the second child to the left; and (4) the label of the thirrd child to the

left. Once the head is identified as the previous child, that selection is fixed for that

candidate analysis from that point forward. For every rule expansion, more than

one analysis must be considered, depending on the range of possibilities for head

assignment.

One possible concern would be the use of the new node label to condition the head

probability, and also the lexical head of the constituent to condition the probability

of the new node label. The way that the CURR-HEAD function is defined however,

14 B. Roark

(a)

S

NP

DT

the

NN

cop

VP

VBD

saw

NP

NP

DT

a

NN

thief

PP

IN

with

(b)

S

NP

DT

the

NN

cop

VP

VBD

saw

NP

DT

a

NN

thief

PP

IN

with

Conditioning Function Description Value Returned

Tree (a) Tree (b)

0 PAR-SIB(node,1,0) Left-hand side (LHS), i.e. parent IN IN

1 PAR-SIB(node,2,0) Parent of LHS (PAR) PP PP

2 PAR-SIB(node,1,1) Last child of PAR NULL NULL

3 LEFTMOST-PS(node,3,0) Parent of PAR (GPAR) NP VP

4 LEFTMOST-CCH(node,1,1) POS of C-Commanding head NN VBD

5 CC-HEAD(node,1,0) C-Commanding head thief saw

6 CC-HEAD(node,2,0) Next C-Commanding head saw cop

Fig. 7. Two trees, to illustrate the tree-walking functions for POS expansions. The newly

hypothesized node in both trees (a) and (b) is the word ‘with’. The labels of these new nodes

are the conditioned variables.

is that, if the head of the constituent has not been assigned yet, it selects the head

of the previous child. Hence the head probability can be evaluated after the rule

expansion probability.

The Look-Ahead Probability (LAP) is defined in exactly the way it was in the

previous section, except that instead of being conditioned on the composite category

created through factorization, it is conditioned on the label of the current category

and the three previously emitted children.

4 Empirical results

Evaluation is carried out on a hand-parsed test corpus, which was created using the

Penn Treebank II annotation guidelines (Bies et al. 1995), and the manual parses are

treated as correct. We will call the manual parse GOLD and the parse that the parser

returns TEST. Precision is the number of common constituents in GOLD and TEST

divided by the number of constituents in TEST. Recall is the number of common

constituents in GOLD and TEST divided by the number of constituents in GOLD.

Following standard practice, we will be reporting scores only for non-part-of-speech

Robust garden path parsing 15

Table 1. Parsing results using the conditional probability model from Roark (2001a),

with (i) a PCFG backbone, from Roark (2001a); (ii) a standard smoothed Markov

grammar of order 3, and (iii) a Markov grammar of order 3 with probability mass

reserved for any non-terminal being emitted. Results are trained on sections 2-21 and

tested on section 23 of the Penn Wall St. Journal Treebank

Grammar LR LP CB 0 CB ≤ 2 Pct. Avg. rule Average
CB failed expansions analyses

considered† advanced†

section 23: 2416 sentences of length ≤ 100

PCFG 85.7 85.7 1.41 59.0 79.9 1.7 6,709 207.6
Smoothed (std) 86.4 86.8 1.31 59.5 81.6 0 9,008 198.9
Smoothed (any) 86.4 86.8 1.32 59.8 81.5 0 16,378 199.0

†per word

constituents, which are called Labeled Recall (LR) and Labeled Precision (LP). Also

following standard practice, we will ignore punctuation altogether, and treat ADVP

and PRN as equivalent.

LR and LP are part of the standard set of PARSEVAL measures of parser quality

(Black, Abney, Flickinger et al., 1991). We will also include, from this set of measures,

the crossing bracket scores: average Crossing Brackets (CB), percentage of sentences

with no crossing brackets (0 CB), and the percentage of sentences with two crossing

brackets or fewer (≤ 2 CB). In addition, to measure efficiency, we will show the

average number of rule expansions considered per word, i.e. the number of rule

expansions for which a probability was calculated (see Roark and Charniak, 2000),

and the average number of analyses advanced to the next priority queue per word.

This is an incremental parser with a pruning strategy and no backtracking. In

such a model, it is possible to commit to a set of partial analyses at a particular

point that cannot be completed given the rest of the input string (i.e. the parser

can garden path). In such a case, the parser fails to return a complete parse. In

the event that no complete parse is found, the highest initially ranked parse on the

last non-empty priority queue is returned. All unattached words are then attached

at the highest level in the tree. In such a way we predict no new constituents and

all incomplete constituents are closed. This structure is evaluated for precision and

recall, which is entirely appropriate for these incomplete as well as complete parses.

If we fail to identify nodes later in the parse, the recall will suffer, and if our early

predictions were bad, both precision and recall will suffer. Of course, the percentage

of these failures are reported as well.

The grammars were induced from sections 2-21 of the Penn Wall St. Journal

Treebank (Marcus, Santorini and Marcinkiewicz 1993), and tested on section 23.

Table 1 gives results using two variants of the smoothed grammar model, along with

the results with these same conditioning features from Roark (2001a)9.

9 The conditional probability models that are presented here are, with the exception of the
Markov grammar smoothing, identical to the models used in Roark (2001a).

16 B. Roark

Table 2. Parsing results using the new conditional probability model (Smoothed (std),

with a variety of base beam factors. Results are trained on sections 2-21 and tested on

section 23 of the Penn Wall St. Journal Treebank (†per word)

Base Beam LR LP CB 0 CB ≤ 2 Pct. Avg. rule Average

Factor CB failed expansions analyses

considered† advanced†

section 23: 2416 sentences of length ≤ 100

10−11 86.4 86.8 1.31 59.5 81.6 0 9,008 198.9

10−10 86.2 86.5 1.34 59.2 81.4 0 5,528 120.0

10−9 86.1 86.4 1.36 59.0 81.1 0 3,439 72.6

10−8 85.6 85.9 1.41 58.3 80.3 0 2,159 43.9

10−7 85.3 85.0 1.49 56.8 79.3 0 1,374 26.6

10−6 84.2 84.5 1.59 55.3 77.9 0 898 16.2

Even though the conditioning events are the same, our accuracy improves by

nearly one percentage point, while our coverage goes to 100%. The rule expansions

considered for the same beam definition increases by a third, but this is hardly

surprising. The number of productions in the original form (i.e. after being de-

transformed) that now have probability mass is infinite, as opposed to the previous,

unsmoothed grammar of about 15,000 rules. Note that adding an ε to the counts

for all parent-children pairs (the Smoothed (any) model) considers many more

candidates, yet the distribution is still peaked enough to give the same level

of accuracy. For this corpus, it appears that only observed children need to be

considered as children of a particular parent.

Table 2 gives results with a variety of base beam factors. Recall that the beam

threshold is defined as a variable probability range. For a given base beam factor γ,

we define the beam as γ|Hi+1|3, i.e. the range narrows with the cube of the number

of analyses advanced. The results in Table 2 indicate that, with the new model,

the beam can be greatly narrowed without losing much accuracy, and maintaining

complete coverage. At a γ = 10−9, the parser loses less than half a point of either

precision or recall, while considering fewer than forty percent of the rule expansions

that were considered at the widest beam. Recall that this measure correlates nearly

perfectly with time (Roark and Charniak 2000), so there is an equivalent speedup10.

5 Parsing transcribed speech

Up to this point, we have been parsing edited newspaper text. One of the benefits

of our parsing approach has been the application of our probabilistic parser as

a language model for statistical speech recognition (Roark 2001a). The ultimate

applicability of the methods that we will describe depends on whether or not

10 At the widest beam, on a 700 Mhz Pentium III processor running linux, the parser processes
the Wall St. Journal test set in on average 9.6 words per second.

Robust garden path parsing 17

S

PP

IN

for

NP

CD

two

NNS

years

NP

PRP

we

VP

VP

AUX

did

RB

n’t

EDITED

S

CC

and

NP

PRP

we

SBAR

WHNP

WDT

which

S

VP

AUX

was

EDITED

NP

DT

a

ADJP

ADVP

RB

kind

RB

of

NN

stupid

Fig. 8. A sample parse tree from the Penn Switchboard Treebank.

a parser such as this can effectively parse spontaneous speech. This section will

examine parsing spontaneous telephone conversation transcripts.

As we have seen, treebank parsers can be amazingly effective on edited newspaper

text. Parsing spontaneous speech, however, is a different matter. False starts, sentence

and word fragments, and ungrammaticality are quite common, all of which, needless

to say, pose a problem for any parser, but particularly for a statistical parser trained

on written, edited text. The release of a new Penn Treebank version, including a large

treebank of Switchboard telephone speech, is thus a great opportunity for examining

how well treebank techniques can be made to handle these kinds of phenomena.

It was viewing this treebank that spurred us to investigate the smoothed Markov

grammar approach presented in the previous section.

Figure 8 gives an example parse tree from the new treebank. There is a new

non-terminal, ‘EDITED’, which is used for false starts. For example, in the tree in

Figure 8, a conjoined clause was begun (‘and we’), but the VP is then continued

with a subordinate clause. The words in the falsely started clause are placed under

an EDITED constituent, with as much internal structure as is evident from the

input. A second false start occurs further along in the string.

These EDITED nodes provide a way to fit disfluencies into a parse structure, and

hence we can apply a parser trained on a treebank of such trees directly to strings

of spontaneous speech, without pre-processing. In other words, we will model the

joint probability of the word string and the disfluency labels directly by including

the disfluency labels in our PCFG. There have been other approaches to modeling

the joint probability of disfluency labels and words, including Stolcke, Shriberg,

Hakkani-Tür and Tür (1999) and Heeman and Allen (1999). These approaches,

however, differ from the current model in that they used finite-state part-of-speech

taggers to model the hidden structure, rather than a PCFG. They also differ with

respect to the kinds of features that were used in their model. For example, Stolcke

et al. (1999) used prosodic features in their HMM to help predict their hidden

events. It is likely that the same kinds of prosodic features that proved useful in that

model could be profitably included in the current model to improve disambiguation.

18 B. Roark

(a)

S

INTJ

UH

Oh

EDITED

NP

PRP

I

NP

PRP

I

VP

VBP

start

(b)

S

NP

PRP

You

VP

VBP

stay

EDITED

PP

IN

within

NP

PRP$

your

INTJ

UH

uh

PP

IN

within

NP

PRP$

your

NN

means(c)

S

INTJ

UH

Uh

INTJ

UH

well

EDITED

S

NP

PRP

we

VP

AUX

’re

NP

PRP

we

VP

AUX

have

NP

NP

CD

one

PP

IN

on

NP

DT

the

NN

way

Fig. 9. Typical disfluencies from the Switchboard treebank.

Following Charniak and Johnson (2001), we designated all of sections 2 and

3 (92,536 sentences, 945,294 words) as the training corpus; files sw4004 through

sw4153 (6,051 sentences, 67,050 words) as the test corpus; files sw4154 through

sw4483 (6,021 sentences, 68,543 words) as the held out corpus; and files sw4519

through sw4936 (5895 sentences, 69,597 words) as the development corpus. These

transcriptions have had punctuation inserted by annotators, to delimit interjections

and false starts. Hence, a sentence such as

‘Uh well we ’re we have one on the way’(21)

was transcribed

‘Uh , well we ’re , we have one on the way.(22)

The word counts above include punctuation.

The first thing we tried was to simply leave the model as it was for the Wall

St. Journal parsing trials, train on the new treebank in exactly the same way, parse

and evaluate11. It is clear, however, by inspecting some of the disfluencies found

in the corpus, that there is some relationship between the false start and what

replaces it. Figure 9 shows two common kinds of false starts, in which the EDITED

node is either followed by the identical constituent, or by a very similar constituent.

In the same way that we were able to effectively model parallelism in conjoined

11 These trials will be reported a bit later in the section.

Robust garden path parsing 19

EDIT-SKIP(node)

1 if PUNCTUATION(node) � If punctuation

2 then return TRUE

3 if node.label = ‘PRN’ or node.label = ‘INTJ’ � If a parenthetical or interjection

4 then return TRUE

5 return FALSE

EDIT-CHILD(node)

1 if node �= NULL and node.leftsib = NULL and node.parent �= NULL

2 then node← node.parent

3 else return NULL

4 thislabel ← node.label � Save left-hand side label

5 node← node.leftsib

6 while node �= NULL and EDIT-SKIP(node)

7 do node← node.leftsib � Move left past skip categories

8 if node = NULL or node.label �= ‘EDITED’

9 then return NULL

10 parentlabel ← node.parent.label � Save parent label

11 node← node.child � Move to first child

12 if node.label = parentlabel � If same label as parent, keep going

13 then node← node.child

14 if node.label �= thislabel � If category is not same as left-hand side

15 then return NULL

16 node← node.child � Go to first child

17 if node = NULL

18 then return NULL

19 else return node.label

Fig. 10. Functions for conditioning probabilities so as to capture EDITED node parallelism.

node is a pointer to a node in the tree, which is a data structure with five fields: label which

is a pointer to a character string; and parent , child , leftsib, and head , which are pointers to

other nodes in the tree. The symbol � precedes comments.

constituents, we could condition the probability of structures on values returned

from a function looking at these EDITED constituents.

There are two observations that we could easily exploit to model the likelihood of

an EDITED constituent: (i) the first child of the first constituent after the EDITED

constituent tends to be the same as the first child of the category inside of the

EDITED constituent; and (ii) the first word after the EDITED constituent tends

to be the same as the first word of the EDITED constituent. There are a couple

of provisos that need to made to these observations. First, interjections (e.g. ‘uh’)

and parentheticals (e.g. ‘you know’ or ‘I mean’) as well as punctuation frequently

stand between the disfluency and the continuation. Hence, any algorithm that wants

to link a disfluency and its continuation should skip these categories. Second, as

evidenced by the disfluency in Figure 9c, the category directly under the EDITED

node may not be the next produced category, but rather the category under which

the disfluency occurs. In this case, to get the parallelism, one must look at the

category under the EDITED node, and, if it is the same as the parent of the

EDITED node, go to its first child to find the parallel constituent.

20 B. Roark

EDIT-LEX(node, m)

1 while node �= NULL and node.leftsib = NULL � Move up left-child chain

2 do node← node.parent

3 if node = NULL

4 then return NULL

5 node← node.leftsib

6 while node �= NULL and EDIT-SKIP(node)

7 do node← node.leftsib � Move left past skip categories

8 if node = NULL or node.label �= ‘EDITED’

9 then return NULL

10 while node.child �= NULL

11 do node← node.child � Move down to the left-corner

12 for i← 1 to m � Move up m nodes

13 do if node �= NULL

14 then node← node.parent

15 if node �= NULL

16 then return node

17 else return NULL

Fig. 11. Another function for conditioning probabilities so as to capture EDITED node

parallelism. node is a pointer to a node in the tree, which is a data structure with five fields:

label which is a pointer to a character string; and parent , child , leftsib, and head , which are

pointers to other nodes in the tree. The symbol � precedes comments.

Table 3. Parsing results using the model from previous sections, and the new model

with functions to condition probabilities on EDITED node parallelism. The parser was

trained on sections 2 and 3 of the switchboard treebank, and tested on files sw4004

through sw4153 (†per word)

Model LR LP CB 0 CB ≤ 2 Pct. Avg. rule Average
CB failed expansions analyses

considered† advanced†

sw4004-sw4153: 6051 sentences of length ≤ 100

WSJ Model 84.6 85.2 0.64 83.6 92.1 0 9,987 176.6
w/ EDITED fnct 85.2 85.6 0.61 83.8 92.4 0 9,562 170.1
and no punct 84.0 84.6 0.68 82.1 91.5 0.08 12,051 182.2

Two new functions were written, one to match the first constituent following

the EDITED node with a constituent under the EDITED node, and condition its

expansion on the first child of this edited category (EDIT-CHILD). This function

is presented in Figure 10. The next is to condition the probability of the first

lexical item after an EDITED node with the left-corner lexical item in the EDITED

node (EDIT-LEX). This function is presented in Figure 11. The revised conditional

probability models are presented in Figure 12.

Table 3 gives parsing results both with the conditional probability models from

the previous sections, and with the new EDITED node functions. Since punctuation

is added by annotators, and not in the speech stream, we also ran a trial with

the new EDITED node functions, with punctuation removed, to see the effect on

Robust garden path parsing 21

Conditional Probability Model for non-POS expansions

Conditioning Function Description

0 PAR-SIB(node,1,0) Left-hand side (LHS)

1 PAR-SIB(node,0,1) Last child of LHS

2 PAR-SIB(node,0,2) 2nd last child of LHS

3 PAR-SIB(node,0,3) 3rd last child of LHS

4 PAR-SIB(node,2,0) Parent of LHS (PAR)

5 EDIT-CHILD(node) First Child of category under EDITED node

6 PAR-SIB(node,1,1) Last child of PAR

7 PAR-SIB(node,3,0) Parent of PAR (GPAR)

8 PAR-SIB(node,2,1) Last child of GPAR

9 CONJ-PARALLEL(node) First child of conjoined category

10 CURR-HEAD(node,0) Lexical head of current constituent

Conditional Probability Model for POS expansions

Conditioning Function Description

0 PAR-SIB(node,1,0) Left-hand side (LHS)

1 PAR-SIB(node,2,0) Parent of LHS (PAR)

2 PAR-SIB(node,1,1) Last child of PAR

3 EDIT-LEX(node,1) POS of EDITED left-corner lexical item

4 EDIT-LEX(node,0) EDITED left-corner lexical item

5 LEFTMOST-PS(node,3,0) Parent of PAR (GPAR)

6 LEFTMOST-CCH(node,1,1) POS of C-Commanding head

7 CC-HEAD(node,1,0) C-Commanding head

8 CC-HEAD(node,2,0) Next C-Commanding head

Fig. 12. The modified conditional probability models used for Switchboard parsing. These are

identical to those in Figures 6 and 7, except for the EDIT-CHILD and EDIT-LEX functions.

accuracy. The look-ahead and head probability models remained the same as in the

previous section. Overall, all models do pretty well. The new functions provide a half

a percentage point improvement in accuracy, and about a four percent decrease in

expansions considered. As far as correctly finding EDITED nodes, the old model,

inherited from the Wall St. Journal parser, gets 56.5% recall and 67.0% precision for

these nodes; the new model gets 63.5% recall and 71.0% precision. Thus our new

functions do seem to be buying us some improvement in detecting disfluencies, which

translates to overall accuracy improvements. Removing punctuation hurt much less

than has been reported for the Wall St. Journal Treebank (Roark 2001a), which

bodes well for parsing the output of a speech recognizer.

Table 4 gives the performance with our Switchboard conditional probability model

at a variety of base beam factors. It would be surprising if the same parameterization

worked equally well both for Wall St. Journal text and spoken language. Indeed,

22 B. Roark

Table 4. Parsing results using the new model with functions to condition probabilities

on EDITED node parallelism, at various base beam factors. The parser was trained

on sections 2 and 3 of the switchboard treebank, and tested on files sw4004 through

sw4153 (†per word)

Base Beam LR LP CB 0 CB ≤ 2 Pct. Avg. rule Average
Factor CB failed expansions analyses

considered† advanced†

sw4004-sw4153: 6051 sentences of length ≤ 100

10−11 85.2 85.6 0.61 83.8 92.4 0 9,562 170.1
10−10 85.1 85.6 0.61 83.9 92.5 0 5,799 101.7
10−9 85.0 85.5 0.61 83.8 92.4 0 3,574 61.1
10−8 84.8 85.4 0.62 83.7 92.3 0 2,219 36.8
10−7 84.4 85.0 0.64 83.5 92.1 0 1,404 22.4
10−6 83.5 84.1 0.68 82.7 91.9 0.02 915 13.6

between 10−9 and 10−11 there is virtually no difference in accuracy, yet there is a

60% reduction in the number of rule expansions considered12.

Note that at the narrowest beam tested, 10−6, one sentence fails to find a parse, i.e.

the parser garden paths. For these models we are using the Smoothed (std) model,

where only categories observed as children of a particular parent have non-zero

probability of being children of that parent. If failing one sentence out of 6,000 is

enough of a problem for a particular application, the more permissive model, which

does not garden path, can be used, perhaps in response to failure.

Since the Switchboard treebank is relatively new, there is only one other parsing

result that we are aware of, to which we could compare these results. This is the

two-stage architecture presented in Charniak and Johnson (2001), which first runs

a high-precision classifier to decide whether lexical items are EDITED. If they are,

then they are removed for input into a statistical parser. The labeled precision and

recall percentages presented in that paper were measured according to a special

definition, which has three modifications to the definition that we have been using

until now. First, all internal structure of EDITED nodes is removed, creating flat

constituents. Secondly, two EDITED nodes with no intermediate non-EDITED

material are merged. Thirdly, the beginning and ending positions of the EDITED

constituents are treated as equivalent for scoring purposes (like punctuation).

Table 5 presents their results and ours with this modified precision and recall

metric. We present precision and recall, as well as the F-measure, since the precision

and recall can be rather far apart. We also measured the performance of our parser

just with respect to these modified EDITED nodes. These results indicate that we do

pretty well on the internal structure of edited nodes, so that our performance drops

somewhat when that structure is omitted. With the pre-processing, the Charniak

12 The expansions considered metric is directly proportional to time, and provides a machine-
independent metric, as argued in Roark and Charniak (2000).

Robust garden path parsing 23

Table 5. Results using the Charniak and Johnson modified labeled precision and

recall metric, of their parser, our parser, and EDITED nodes from our parser

Parser LR LP F-measure

Charniak and Johnson 86.5 85.3 85.9
Our parser 84.7 84.9 84.8
Our EDITED nodes 63.9 67.5 65.6

parser outperforms ours by a point and a half. This difference is unsurprising, since

that model, of course, is not incremental, and hence can capture certain dependencies

that elude ours.

To summarize this section, we have taken our existing parser and applied it

unmodified to transcribed speech with quite good results. With the additional

conditioning information, we eke out an additional half a point of accuracy, and it

even performs fairly well in the absence of punctuation.

6 Conclusion

In this paper, we have presented a relatively simple change to a PCFG model,

which results in complete coverage when used by a top-down parser. Reserving

an appropriate amount of probability mass for unobserved events is essential for

predictive parsing of this sort. The model that we have presented uses standard

smoothing techniques to reserve just enough probability mass for unobserved events

– not so much that the original peaked distribution fails to favor the better parses,

but enough so that in situations that were previously failures (either catastrophic

garden paths or recoverable but highly unlikely derivations) better derivations can

receive appropriate probability mass. We have shown that this can be done without

sacrificing efficiency or accuracy, and without resorting to pre-defined recovery

heuristics.

Most of the results presented in this paper were produced for the author’s Ph.D.

thesis. That thesis contains a host of experiments with these models, including some

which demonstrate perplexity and word error rate reduction over other language

models. Due to space constraints, the reader is referred to Roark (2001b) for those

results.

Acknowledgements

Much of the work that is presented here was done while a PhD student in the

Department of Cognitive and Linguistic Sciences at Brown University. The author

would like to thank Mark Johnson for support and discussion during the course

of this work. Thanks also to Eugene Charniak, Fred Jelinek and Julie Sedivy for

reading and commenting on the work. This research was supported in part by NSF

IGERT grant #DGE-9870676.

24 B. Roark

References

Aho, A. V., Sethi, R. and Ullman, J. D. (1986) Compilers, Principles, Techniques, and Tools.

Addison-Wesley.

Bies, A., Ferguson, M., Katz, K., MacIntyre, R., Tredinnick, V., Kim, G., Marcinkiewicz, M.

A. and Schasberger, B. (1995) Bracketing guidelines for treebank ii style penn tree bank

project. Technical Report, CIS, University of Pennsylvania.

Black, E., Abney, S., Flickenger, D., Gdaniec, C., Grishman, R., Harrison, P., Hindle, D., Ingria,

R., Jelinek, F., Klavans, J., Liberman, M., Marcus, M. P., Roukos, S., Santorini, B. and

Strzalkowski, T. (1991) A procedure for quantitatively comparing the syntactic coverage

of english grammars. DARPA Speech and Natural Language Workshop, pp. 306–311.

Charniak, E. (2000) A maximum-entropy-inspired parser. Proceedings 1st Conference of the

North American Chapter of the Association for Computational Linguistics, pp. 132–139.

Charniak, E. and Johnson, M. (2001) Edit detection and parsing for transcribed

speech. Proceedings 2nd Conference of the North American Chapter of the Association for

Computational Linguistics.

Collins, M. J. (1997) Three generative, lexicalised models for statistical parsing. Proceedings

35th Annual Meeting of the Association for Computational Linguistics, pp. 16–23.

Corman, T. H., Leiserson, C. E. and Rivest, R. L. (1990) Introduction to Algorithms. MIT

Press.

Heeman, P. A. and Allen, J. F. (1999) Speech repairs, intonational phrases, and discourse

markers: Modeling speakers’ utterances in spoken dialogue. Computational Linguistics

25(4): 527–571.

Jelinek, F. and Mercer, R. L. (1980) Interpolated estimation of markov source parameters

from sparse data. Proceedings Workshop on Pattern Recognition in Practice, pp. 381–397.

Johnson, M. (1998) PCFG models of linguistic tree representations. Computational Linguistics

24(4): 617–636.

Marcus, M. P., Santorini, B. and Marcinkiewicz, M. A. (1993) Building a large annotated

corpus of English: The Penn Treebank. Computational Linguistics 19(2): 313–330.

Roark, B. (2001a) Probabilistic top-down parsing and language modeling. Computational

Linguistics 27(2): 249–276.

Roark, B. (2001b) Robust Probabilistic Predictive Syntactic Processing. PhD thesis, Brown

University. (http://arXiv.org/abs/cs/0105019.)

Roark, B. and Charniak, E. (2000) Measuring efficiency in high-accuracy, broad-coverage stat-

istical parsing. Proceedings COLING-2000 Workshop on Efficiency in Large-scale Parsing

Systems, pp. 29–36.

Stolcke, A., Shriberg, E., Hakkani-Tür, D. and Tür, G. (1999) Modeling the prosody of

hidden events for improved word recognition. Proceedings of Eurospeech, pp. 307–310.

