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Abstract— RSVP KeyboardTM is an electroencephalography (EEG)
based brain computer interface (BCI) typing system, designed as an
assistive technology for the communication needs of people with locked-
in syndrome (LIS). It relies on rapid serial visual presentation (RSVP)
and does not require precise eye gaze control. Existing BCI typing
systems which uses event related potentials (ERP) in EEG suffer
from low accuracy due to low signal-to-noise ratio. Henceforth, RSVP
KeyboardTM utilizes a context based decision making via incorporating
a language model, to improve the accuracy of letter decisions. To further
improve the contributions of the language model, we propose recursive
Bayesian estimation, which relies on non-committing string decisions,
and conduct an offline analysis, which compares it with the existing
naı̈ve Bayesian fusion approach. The results indicate the superiority
of the recursive Bayesian fusion and in the next generation of RSVP
KeyboardTM we plan to incorporate this new approach.

I. INTRODUCTION
Brain computer interfaces (BCI) is an emerging technology that

is being designed for people with severe speech and physical
impairments for communication and computer control. When the
BCI is coupled with a communication system, the device may offer
people who are completed paralyzed a means to generate expressive
language [1], [2], [3], [4]. Unfortunately the use of noninvasive
BCI techniques on letter-by-letter spelling systems suffers from
low accuracies for symbol selection due to low signal to noise
ratio and variability of background brain activity. Researchers have
turned to various hierarchical symbol trees to improve spelling
efficiency [3], [5], [6]. Slow throughput greatly diminishes the
practical usability of such systems. Incorporation of a language
model into the decision-making process to predict the next letter
using the previous letters can greatly affect the performance of these
systems by improving both accuracy and speed [7]. If the symbol
decisions are based on EEG evidence only, they will not be accurate
enough, thus reducing the value of any text prediction. We propose
a new BCI, the RSVP KeyboardTM, based on rapid serial visual
presentation (RSVP), where there is a fusion of EEG data and a
sophisticated language model to affect decision making for symbol
selection [8].

In this paper, we propose a new fusion technique based on
recursive Bayesian estimation for RSVP KeyboardTM, which is
also applicable for any BCI typing system. This technique aims to
make the fusion more robust to uncorrected errors to accommodate
the needs of the user population who prefer continuing with their
mistakes instead of correcting them. To quantitatively measure this
effect, we investigate context based decision making, without any
erasure option, in an offline/simulated manner. EEG classification
of the event related potentials (ERP) corresponding to stimuli for
RSVP is done using regularized discriminant analysis (RDA). Of-
fline analysis is done by randomly sampling words from a language
lexicon with appropriate frequencies. For each sampled word, a
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typing scenario, which the EEG data is ordered to simulate the
letter-by-letter typing, is created. Context based letter probabilities
and EEG classification scores are merged using a naı̈ve Bayesian
estimation approach and a recursive Bayesian estimation approach,
comparatively. We present a performance analysis that compares
different scenarios with varying numbers of visual presentation
sequences used in EEG classification and initial results are very
encouraging.

II. RSVP BASED BCI AND ERP CLASSIFICATION

RSVP is an experimental psychophysics technique in which
visual stimulus sequences are displayed on a screen over time
on a fixed focal area and in rapid succession. The Matrix-P300-
Speller [1] used by Wadsworth and Graz groups (especially G.tec)
opts for a spatially distributed presentation of possible symbols,
highlighting them in different orders and combinations to elicit
P300 responses. Berlin BCI’s recent variation utilizes a 2-layer tree
structure [3] where the subject chooses among six units (symbols
or sets of these) where the options are laid out on the screen while
the subject focuses on a central focal area that uses an RSVP-like
paradigm to elicit P300 responses. In contrast, our approach is to
distribute the stimuli temporally and present one symbol at a time
using RSVP and seek a binary answer to find the desired letter in
a right-branching tree. The latter method has the advantage of not
requiring the user to look at different areas of the screen.

In the current study, which is an offline analysis, our RSVP
paradigm utilizes stimulus sequences consisting of letters in the En-
glish alphabet presented sequentially with random ordering where
the user is expected to show positive intent for only one pre-
designated letter for each epoch (see details below). When the
user sees the predesignated infrequent (1 in 26) target, the brain
generates an event related potential (ERP) in the EEG; the most
prominent component of this ERP is the P300 wave, which is
a positive deflection in the scalp voltage primarily over centro-
parietal cortex that generally occurs with a latency of about 300 ms.
This natural response of the brain to the event of visual stimulus
matching the rare sought target allows us to make binary decisions
about user’s intent.

The intent detection problem becomes a signal classification
problem when the EEG signals are windowed in a stimulus-time-
locked manner over a duration with sufficient length. After some
preprocessing (details are explained in [9]) the signals acquired
from each EEG channel will be incorporated and classified to
determine the class label: ERP or non-ERP.

Regularized Discriminant Analysis (RDA) [10] is used to deter-
mine a classification discriminant score for each stimulus indicating
whether it is a response to a target letter or not; this score is used
in conjunction with a language model to make the final Bayesian
decision on the class label of each letter. RDA is a modified
quadratic discriminant analysis (QDA) model, where the feature
vectors from each class assumed to belong to a multivariate normal
distribution. The singularities in the covariance matrices estimated
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from the calibration data are removed using the following shrinkage
and regularization operations. The shrinkage procedure makes the
class covariances closer to the overall data covariance, and therefore
to each other, thus making the quadratic boundary closer to a linear
one. Shrinkage is applied as

Σ̂c(λ) =
(1− λ)Ŝc + λŜ

(1− λ)Nc + λN
, Ŝc = NcΣ̂ΣΣc, Ŝ = Ŝ0 + Ŝ1 (4)

where λ is the shrinkage parameter; Σ̂c are the class covariance
matrices estimated for class c ∈ {0, 1} with c = 0 for non-target
class and c = 1 for target class; and Nc is the number of calibration
samples in class c. Regularization is administered as

Σ̂c(λ, γ) = (1− γ)Σ̂c(λ) +
γ

d
tr[Σ̂c(λ)]I, (5)

where γ is the regularization parameter, tr[·] is the trace function
and d is the dimension of the data vector.

After carrying out the regularization and shrinkage on the es-
timation covariance matrices, the Bayesian classification rule [11]
is defined as the comparison of the log-of-the-posterior-ratio using
the posterior probability distributions with a threshold, which can
incorporate the relative risks or costs of making an error for each
class. The corresponding log-of-the-posterior-ratio is given by

δRDA(x) = log
fN (x; µ̂1, Σ̂1(λ, γ))π̂1

fN (x; µ̂0, Σ̂0(λ, γ))π̂0

, (6)

where µc, π̂c are estimates of class means and priors respectively;
x is the data vector to be classified and fN (x;µ,Σ) is the pdf of
a multivariate normal distribution.

The letter candidates, which contain all possible selectors, can
be shown multiple times to achieve a higher classification accuracy
in EEG-scores by making use of independent visual stimulus trial
responses, as is commonly the case in EEG-based spellers1. We
define a sequence to be a randomly ordered set of all letters shown
as stimuli. Since the randomness of the target stimulus position in
any given sequence is key to eliciting an ERP, a random permutation
of the letters is used for each sequence in our experiments.

Thereafter all or some of the sequences can be used to classify if
a letter is target or non-target, depending on the operational mode
of the ERP classifier, that is whether it is using a single-trial, 2-
trial, or 3-trial approach. The log-of-the-posterior-ratios can then be
used in a fusion with a language model explained in the following
section.

III. LANGUAGE MODELING

Language modeling is very important for many text processing
applications, such as speech recognition, machine translation, as
well as for the kind of typing application being investigated
here [12]. Typically, the prefix string (what has already been
typed) is used to predict the next symbol(s) to be typed. The next
letters to be typed become highly predictable in certain contexts,

1The typical number of repetitions of visual stimuli is usually 8 or 16,
although G.tec claims one subject is able to achieve reliable operation with
2-trials (verbal communication). We had similar subjects who can type
accurately with 1 or 2 trials per symbol.

particularly word-internally. In applications where text genera-
tion/typing speed is very slow, the impact of language modeling can
become much more significant. BCI-spellers, including the RSVP
KeyboardTM paradigm presented here, can be extremely low-speed
letter-by-letter writing systems, and thus can greatly benefit from
the incorporation of probabilistic letter predictions from an accurate
language model during the writing process.

The language model used in this paper is based on the n-
gram sequence modeling paradigm, very widely used in all of
the application areas mentioned above. It estimates the conditional
probability of any letter in a sequence given n− 1 previous letters
using a Markov model of order n − 1. Let W be a sequence of
letters where Wi is the ith letter and let S be the set of candidate
symbols. For an n-gram model, the conditional probability of Wi

given previously written symbols is obtained using a regularized
relative frequency estimation from a large text corpus.

For the current study, all n-gram language models were estimated
from a one million sentence (210M character) sample of the NY
Times portion of the English Gigaword corpus. Corpus normal-
ization and smoothing methods were as described in [12]. Most
importantly for this work, the corpus was case normalized, and we
used Witten-Bell [13] smoothing for regularization.

IV. LANGUAGE MODEL AND EEG FUSION
A. Naı̈ve Bayesian Approach

The evidence obtained from EEG and the language model
is used collaboratively to make a more informative symbol
decision. For each epoch and a number of sequences shown,
NS , a decision will be made using the previously written
symbols and EEG classification scores corresponding to NS

sequences. Let δRDA(xs,ns) be the corresponding posterior
ratio scores obtained from RDA for letter s ∈ S, where
ns ∈ {1, 2, · · · , NS}. Then the posterior probability of letter s
to be in class c given the classification scores for letter s trials
in each sequence and the previous letters becomes (1), where cs
is the candidate class label of letter s , nLM is the order of the
language model, W′

i−1 = [W ′i−1,W
′
i−2, · · · ,W ′i−nLM+1]

represents the already selected symbols and
δRDA(xs) = [δRDA(xs,1), δRDA(xs,2), · · · , δRDA(xs,NS )]. This
is obtained assuming the scores obtained from RDA for the
stimuli corresponding to the current letter and previously written
letters are conditionally independent given class label, i.e
δRDA(xs) ⊥⊥ W′

i−1|c, and the RDA scores corresponding to
EEG responses for different trials of the same letter in different
sequences are conditionally independent given the class label. The
conditional probability density functions of RDA scores given the
class labels, P (δRDA(xs,ns))|cs = c), are estimated using kernel
density estimation on the scores of training data, using a Gaussian
kernel whose bandwidth is selected using Silverman’s rule of
thumb that assumes the underlying density has the same average
curvature with a matching-variance normal distribution [14].

Finally, while making our decisions we assume that exactly
one of the candidate symbols is target, which is reasonable
since the user is expected to look for only one target symbol,
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and class labels for different symbols are independent given
all the evidence. The posterior probability of the symbol is
given as (2) where δRDA,i = {δRDA(xs) : ∀s ∈ S}, for ith epoch.
If P (cs = 1|δRDA(xs),W

′
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sumptions and Bayes’ Theorem we obtain (2). Correspondingly,
the most likely symbol is
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′
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B. Recursive Bayesian Approach
The naı̈ve approach has the disadvantage of committing to one

selection of a string of symbols, which might potentially cause the
language model to be more harmful then it is beneficial after an
erroneous selection. Therefore as a remedy to this problem, we
propose to construct the hidden Markov model (HMM) where the
substring of last nLM letters of the current epoch constitute the
latent variable and EEG scores of all symbols corresponding to
an epoch constitute the observed variable. An illustration of the
corresponding HMM is given in Fig. 1, where δRDA,i represents
δRDA for epoch i.

Fig. 1: Hidden Markov Model used in recursive Bayesian approach for
the fusion of language model with EEG scores

Using recursive Bayesian estimation [15], marginalizing over
older state variable the current state probability mass given all
observed EEG scores obtained in (7) where s = {s1, s2, · · · , slast}
is a specific state. There are common variables between consecutive
latent states, therefore P (Wi = s|Wi−1 = s′) becomes zero for
many s′ which decreases the number of summations required. If
i ≤ nLM it becomes (8), consequently the posterior probability of
state variable becomes (9). If i > nLM , similarly we obtain (10)
and (11).

Assuming all EEG scores for an epoch are conditionally inde-
pendent given the class labels, we can calculate p(δRDA,i|Wi = s)
as (12), where p(δRDA,i(xs,ns |cs = c) is estimated using KDE as
in IV-A, P (Wi = slast|Wi−1 = slast−1, · · · ,Wi−nLM+1 = s1)
or P (Wi = slast|Wi−1 = s1:last−1) is estimated using n-gram
language model and P (Wi−1 = s1:last−1|δRDA,1:i−1) is calculated
recursively.

Finally, at any epoch, we can estimate the latest substring using
maximum likelihood,

Ŵi = arg max
s∈SnLM

P (Wi = s|δRDA,1:i).

Similarly, at ith epoch, we can estimate Wj for 1 ≤ j ≤ i− nLM

using maximum likelihood as (13).

V. EXPERIMENTAL RESULTS

For this study, two healthy subjects were recruited for two
sessions each. In each session 200 letters are selected (with re-
placement, out of 26) according to their frequencies in the English
language and randomly ordered to be used as target letters in each
epoch. In each epoch, the designated target letter and a fixation sign
are shown for 1s each and followed by 3 sequences of randomly
ordered 26 letters of the English alphabet with 150 ms inter-stimuli
interval. Subjects are asked to look for the target letter shown at
the beginning of the epoch.

The signals are recorded using a g.USBamp biosignal amplifier
using active g.Butterfly electrodes from G.tec (Graz, Austria) at
256Hz. The EEG channels positioned according to the International
10/20 System were O1, O2, F3, F4, FZ, FC1, FC2, CZ, P1, P2,
C1 C2, CP3, CP4. Signals were filtered by nonlinear-phase 0.5-
60 Hz bandpass filter and 60 Hz notch filter (G.tec’s built-in
design), afterwards signals filtered further by 1.5-42 Hz linear-phase
bandpass filter (our design). The filtered signals were downsampled
to 128Hz. For each channel, stimulus-onset-locked time windows
of [0,500)ms following each image onset was taken as the stimulus
response.

Let us denote by ej the jth epoch in a given session and let E be
the ordered set containing all epochs in the session. E is partitioned
into 10 equal-sized nonintersecting blocks, Ek; for every ej there
is exactly one kj such that ej ∈ Ekj . For every ej acting as a
test sample, the ERP classifier is trained on the set E\Ekj . During
training, the classifier parameters λ and γ are determined using 10-
fold validation and grid search within the set E\Ekj . The kernel
density estimates of the conditional probabilities of classification
scores for EEG classifiers are obtained using scores obtained from
E\Ekj . The trained classifiers are applied to their respective test
epochs to get the 10-fold cross-validation test results presented in
the tables.

The language model was trained as described in III. 36000 words
are randomly drawn from a word lexicon weighted according to
word occurrences and letter count. Each sampled word is considered
to be a typing scenario and for each letter in the word we simulate
the fusion of EEG responses and the language model in the
following way: (i) each letter is assumed to be the target letter
of a typing process using BCI; (ii) an EEG epoch with a matching
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target symbol is randomly selected from the epochs collected2; (iii)
under the assumption of independence of EEG responses with the
previous letters selected, for each epoch, the EEG responses for
every letter is converted to EEG classifier scores; (iv) the matching
model probabilities for each letter are obtained from the language
model using letters selected priorly with the same process; (v)
and the fusion of ERP classifier scores and language models was
achieved as described above. There was no erasure operation, and
consequently during the simulation it is assumed that the subjects
continued to type the next planned symbol even if the previous one
selected incorrectly. Fusion results were obtained for n-gram model

1 sequence 2 sequences 3 sequences
Naı̈ve Bayesian fusion (0.26, 0.36) (0.46, 0.64) (0.63, 0.82)
Recursive Bayesian fusion (0.35, 0.49) (0.64, 0.73) (0.76, 0.87)

TABLE I: The minimum and the maximum values of the correct
symbol selection ratios over different sessions for varying the number
of sequences used in EEG classification for naı̈ve Bayesian fusion and
recursive Bayesian fusion approaches.

order of 4. The EEG scores were assumed to have been evaluated
for NS = 1, 2, and 3 sequences (to evaluate the contribution of
multi-trial information) to decide if a letter under evaluation was a
desired target letter or not. In the results, only EEG data from the
first NS sequences of the epoch was used for classification for each
selected sequence count. Ratio of total number of letters selected
correctly and the total number of letters is presented in Table I for
all sessions.

VI. CONCLUSION

In previous work [9], we demonstrated that incorporation of
context based information using naı̈ve fusion to support ERP classi-
fication can improve the symbol classification accuracy upto 3-fold
compared. Moreover, we demonstrated a real time system in action
using this naı̈ve fusion approach [16]. In this paper we demonstrated
with a simulation study that using a recursive Bayesian estimation
to estimate the last substring might considerably improve the typing
accuracy, consequently speed by using less number of sequences to
type each symbol, over our previously implemented naı̈ve fusion.

In all of the sessions, the approach with recursive Bayesian
estimation outperformed considerably the naı̈ve fusion rule for all
sequences per epoch, where the performances increase monoton-
ically with the number of sequences as expected. The results are
very promising, however it is important to note that there is no
erasure symbol in these simulations. Since the naı̈ve approach is less
resistant to errors, existence of an erasure symbol might improve
its performance more considerably than the other. As future work,
we are planning to collect data for a similar analysis including
the erasure symbol and using different model orders, which would
result with a more accurate comparison.

The incorporation of recursive Bayesian approach to the real time
system would also be useful to assess its performance. However this

2Since subjects only focus to a single target letter without knowing the
predecessor letters of the typing process in this experiment, it is assumed
that the EEG responses created during an epoch are independent from the
predecessors.

approach has some disadvantages which might become important
during the real time implementation. Firstly, it requires a large
amount of memory since it keeps all the states from the previous
selection. Secondly, the interface needs to be more confusing for the
subject since previously selected symbols are ambiguous. As we go
forward with improvements to our existing RSVP KeyboardTM sys-
tem, all of these considerations will be important.
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