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ABSTRACT
Event related potentials (ERP) corresponding to a stimulus in elec-
troencephalography (EEG) can be used to detect the intent of a per-
son for brain computer interfaces (BCI). This paradigm is widely
utilized to build letter-by-letter text input systems using BCI. Nev-
ertheless using a BCI-typewriter depending only on EEG responses
will not be sufficiently accurate for single-trial operation in general,
and existing systems utilize many-trial schemes to achieve accuracy
at the cost of speed. Hence incorporation of a language model based
prior or additional evidence is vital to improve accuracy and speed.
In this paper, we study the effects of Bayesian fusion of an n-gram
language model with a regularized discriminant analysis ERP de-
tector for EEG-based BClIs. The letter classification accuracies are
rigorously evaluated for varying language model orders as well as
number of ERP-inducing trials. The results demonstrate that the
language models contribute significantly to letter classification ac-
curacy. Specifically, we find that a BCI-speller supported by a 4-
gram language model may achieve the same performance using 3-
trial ERP classification for the initial letters of the words and using
single trial ERP classification for the subsequent ones. Overall, fu-
sion of evidence from EEG and language models yields a significant
opportunity to increase the word rate of a BCI based typing system.

Index Terms— Brain computer interfaces, Bayesian fusion,
Language model, Event related potential

1. INTRODUCTION

There exist a considerable number of people with severe motor and
speech disabilities. Brain computer interfaces (BCI) are a poten-
tial technology to create a novel communication environment for
this population, especially persons with completely paralysed vol-
untary muscles [1, 2]. One possible application of BCI is typing
systems; specifically, those BCI systems that use electroencephalog-
raphy (EEG) have been increasingly studied in the recent decades to
enable the selection of letters for expressive language generation [1,
2, 3]. However the use of noninvasive techniques on a letter-by-letter
system lacks efficiency due to low signal to noise ratio and variability
of background brain activity. Therefore current BCI typing system
suffer from low symbol rates and researchers have turned to vari-
ous hierarchical symbol trees to achieve system speedups [3, 4, 5].
Slow throughput greatly diminishes the practical usability of such
systems. Incorporation of a language model, which predicts the next
letter using the previous letters, into the decision-making process can
greatly affect the performance of these systems by improving the
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accuracy and speed. This paper investigates the effect of language
model use in letter classification (target vs. non-target).

As opposed to the matrix layout of the popular P300-Speller [1]
or the hexagonal two-level hierarchy of the Berlin BCI [3], our ap-
proach, which we refer to as RSVP Keyboard, utilizes another well-
established paradigm: rapid serial visual presentation (RSVP) [6, 7].
This paradigm relies on presenting one stimulus at a time, each sub-
sequent stimulus replacing the previous one on the screen, while
the subject tries to perform mental target matching between the in-
tended symbol and the sequence, which is presented at relatively
high speeds. EEG responses corresponding to the visual stimuli are
classified using regularized discriminant analysis (RDA) applied to
stimulus-locked temporal features from multiple channels.

In this paper, we investigate the fusion of language model scores
in an offline/simulated manner with the EEG classification scores, by
randomly sampling contexts of each letter in a large text corpus. For
each sampled context, we derive the language model probabilities of
all 26 letters given the context, and these language model probabil-
ities and the EEG classification scores are fused using a Bayesian
approach, assuming that these two pieces of evidence are condi-
tionally independent given class labels — a reasonable assumption.
We present a performance analysis that compares different scenarios
with varying language model orders and numbers of visual presen-
tation sequences used in EEG classification. The results are very
promising.

2. RSVP BASED BCI AND ERP CLASSIFICATION

RSVP is an experimental psychophysics technique in which visual
stimulus sequences are displayed on a screen over time on a fixed fo-
cal area and in rapid succession. The Matrix-P300-Speller [1] used
by Wadsworth and Graz groups (especially G.tec) opts for a spatially
distributed presentation of possible symbols, highlighting them in
different orders and combinations to elicit P300 responses. Berlin
BCT’s recent variation utilizes a 2-layer tree structure [3] where the
subject chooses among six units (symbols or sets of these) where
the options are laid out on the screen while the subject focuses on
a central focal area that uses an RSVP-like paradigm to elicit P300
responses. In contrast, our approach is to distribute the stimuli tem-
porally and present one symbol at a time using RSVP and seek a
binary answer to find the desired letter in a right-branching tree. The
latter method has the advantage of not requiring the user to look at
different areas of the screen.

In the current study, which is an offline analysis, our RSVP
paradigm utilizes stimulus sequences consisting of letters in the
English alphabet presented sequentially with random ordering
where the user is expected to show positive intent for only one
pre-designated letter for each epoch (see details below). When the
user sees the predesignated infrequent (1 in 26) target, the brain
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generates an event related potential (ERP) in the EEG; the most
prominent component of this ERP is the P300 wave, which is a posi-
tive deflection in the scalp voltage primarily in frontal areas and that
generally occurs with a latency over 300 ms. This natural response
of the brain to the event of visual stimulus matching the rare sought
target allows us to make binary decisions about user’s intent.

The intent detection problem becomes a signal classification
problem when the EEG signals are windowed in a stimulus-time-
locked manner over a duration with sufficient length — in this case
500ms. As a consequence, the signals acquired from each EEG
channel will be incorporated and classified to determine the class
label: ERP or non-ERP. The preprocessing steps used before classi-
fication are as follows. For each channel, the time windowed EEG
signals are filtered by a bandpass filter; temporal feature vectors con-
taining filtered-windowed signals from each channel are subjected to
a linear dimension reduction using the vector covariances estimated
over training samples and eliminating zero-variance directions (in
practice using Principal Component Analysis). Afterwards the data
vectors obtained for each channel are be concatenated to create a
data vector corresponding to the stimuli. This process amounts to
a channel-specific energy-preserving orthogonal projection of raw
temporal features. Regularized Discriminant Analysis (RDA) [8] is
used to determine a classification discriminant score for each stim-
ulus indicating whether it is a response to a target letter or not; this
score is used in conjunction with a language model to make the final
Bayesian decision on the class label of each letter.

RDA is a modified quadratic discriminant analysis (QDA)
model. If each class is assumed to have multivariate normal dis-
tribution and classification is made according to the comparison of
posterior distributions of the classes, the optimal Bayes classifier
resides within the QDA model family. Under this assumption, QDA
depends on the inverse of the class covariance matrices, which are
to be estimated from training data, hence for small sample sizes in
high dimensional problems, singularities of these matrices are prob-
lematic. RDA applies regularization and shrinkage procedures to the
class covariance matrix estimates to eliminate the singularity prob-
lem. The shrinkage procedure makes the class covariances closer to
the overall data covariance, and therefore to each other, thus making
the quadratic boundary closer to a linear one. Shrinkage is applied
as . . .

(A =(1-XX:+ A%, ™
where A is the shrinkage parameter; 3, is the class covariance ma-
trix estimated for class ¢ € {0, 1} with ¢ = 0 for non-target class

and ¢ = 1 for target class; 3 is the weighted average of class covari-
ance matrices. Regularization is administered as
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where  is the regularization parameter, tr[-] is the trace function and
d is the dimension of the data vector.

After carrying out the regularization and shrinkage on the es-
timation covariance matrices, the Bayesian classification rule [9] is
defined as the comparison of the log-of-the-posterior-ratio using the
posterior probability distributions with a threshold, which can incor-
porate the relative risks or costs of making an error for each class.
The corresponding log-of-the-posterior-ratio is given by
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where p, 7. are estimates of class means and priors respectively;
x is the data vector to be classified and far(x; pt, X) is the pdf of a
multivariate normal distribution.

The letter candidates, which contain all possible selectors, can
be shown multiple times to achieve a higher classification accuracy
in EEG-scores by making use of independent visual stimulus trial
responses, as is commonly the case in EEG-based spellers'. We
define a sequence to be a randomly ordered set of all letters shown as
stimuli. Since the randomness of the target stimulus position in any
given sequence is key to eliciting an ERP, a random permutation of
the letters is used for each sequence in our experiments. Thereafter
all or some of the sequences can be used to classify if a letter is
target or non-target, depending on the operational mode of the ERP
classifier, that is whether it is using a single-trial, 2-trial, or 3-trial
approach.

Although the stimuli were presented in random order, we can
simulate conditions when a language model would be operative by
randomly sampling instances of each target letter in a large text cor-
pus, and combining the language model prediction from the sampled
context with the classifier. In the next section, we present our lan-
guage modeling methods, along with details of our corpus sampling
procedure.

)

5RDA (X) = log

3. LANGUAGE MODELING

Language modeling is very important for many text processing ap-
plications, such as speech recognition, machine translation, as well
as for the kind of typing application being investigated here [10].
Typically, the prefix string (what has already been typed) is used to
predict the next symbol(s) to be typed. The next letters to be typed
become highly predictable in certain contexts, particularly word-
internally. In applications where text generation/typing speed is very
slow, the impact of language modeling can become much more sig-
nificant. BCI-spellers, including the RSVP Keyboard paradigm pre-
sented here, can be extremely low-speed letter-by-letter writing sys-
tems, and thus can greatly benefit from the incorporation of prob-
abilistic letter predictions from an accurate language model during
the writing process.

I'The typical number of repetitions of visual stimuli is usually 8 or 16,
although G.tec claims one subject is able to achieve reliable operation with
2-trials (verbal communication)
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The language model used in this paper is based on the n-gram
sequence modeling paradigm, very widely used in all of the appli-
cation areas mentioned above. It estimates the conditional probabil-
ity of any letter in a sequence given n — 1 previous letters using a
Markov model of order n — 1. Let W be a sequence of letters where
Wi is the ™ letter in the sequence. For an n-gram model the esti-
mate of the conditional probability of the letter W; is obtained from
(1), where the joint probabilities are estimated by regularized relative
frequency estimation from a large text corpus. If the language model
order is 1, then P(W;) is equal to the context-free letter occurrence
probabilities in the English language, which is not dependent on the
previous letters. If the language model order is O, then language
modeling has no effect on the decision process, wince in this case
W; is assumed to be drawn from a uniform distribution over the al-
phabet.

For the current study, all n-gram language models were esti-
mated from a one million sentence (210M character) sample of the
NY Times portion of the English Gigaword corpus. Corpus nor-
malization and smoothing methods were as described in [10]. Most
importantly for this work, the corpus was case normalized, and we
used Witten-Bell smoothing for regularization. For each letter, 1000
contexts were randomly sampled (without replacement) from a sep-
arate 1M sentence subset of the same corpus.

4. FUSION OF LANGUAGE MODEL PROBABILITIES AND
ERP CLASSIFIER SCORES

The prediction of the current letter obtained by the language model
using the previously typed letters can be used to improve the perfor-
mance of the ERP classifier explained in Section 2. For each letter
to be written, an epoch of selections is going to be shown in BCIL.
Let Ns be the number of sequences per epoch (i.e. number of trials
ERP classifier scores generated) used to classify stimulus responses
corresponding to each letter in a particular epoch and §RDA(XW1.‘,,,S)
be the corresponding posterior ratio scores obtained from RDA for
letter W;, where ¢ — 1 letters are already written, and sequence n,
where ns € {1,2,---, Ns}. Then the posterior probability of letter
Wi to be in class c given the classification scores for letter W trials
in each sequence and the previous letters is given in (2), where cy, is
the candidate class label of letter W;, W is the 4™ letter previously
written and nz ., is the order of the language model. Using Bayes’
Theorem on (2), we obtain (3). If we assume that the scores ob-
tained from RDA? for the stimuli corresponding to the current letter
and previously written letters are conditionally independent given
class label, i.e 5RDA (Xw,i,l), (5RDA(XWi,2), s 76RDA(XW1,NS) 1

AW g, Wi/—nLMH |c, we obtain (4). Using Bayes’
Theorem on (4) and assuming the conditional independence of the
scores corresponding to EEG responses for different trials of the
same letter in different sequences, we obtain (5). Hence the ratio of
the posterior probabilities becomes (6), which can be compared to a
risk-based threshold, 7, to decide if the letter is a target or not. In our
current implementation, P(drpa(Xw;,, n,))|cw, = c) is estimated
using kernel density estimation on training data, using a Gaussian
kernel whose bandwidth is selected using Silverman’s rule of thumb
that assumes the underlying density has the same curvature as a
matching normal distribution [11]. The classification rule, which
makes decisions using the ratio of posteriors that incorporated infor-

2The RDA scores are used as one dimensional EEG features for fusion
purposes.

mation from ERP classifiers and language model predictions, finally
comes forth as:
1 ifL>T;

o(L) = { 0 ifL<r. (10)

5. EXPERIMENTS AND RESULTS

One male and one female healthy subjects were recruited for this
study. Each subject participated in the experiments for two sessions.
In each session 200 letters are selected (with replacement, out of 26)
according to their frequencies in the English language and randomly
ordered to be used as target letters in each epoch. Each epoch, the
designated target letter and a fixation sign are shown for 1s each
and are followed by 3 sequences of randomly ordered 26 letters of
the English alphabet with 150 ms inter-stimuli interval. Subjects
are asked to look for the target letter shown at the beginning of the
epoch.

The signals are recorded using a g.USBamp biosignal ampli-
fier using active g.Butterfly electrodes from G.tec (Graz, Austria) at
256Hz. The EEG channels positioned according to the International
10/20 System were O1, 02, F3, F4, FZ, FC1, FC2, CZ, P1, P2, C1
C2, CP3, CP4. Signals were filtered by nonlinear-phase 0.5-60 Hz
bandpass filter and 60 Hz notch filter (G.tec’s built-in design), af-
terwards signals filtered further by 1.5-42 Hz linear-phase bandpass
filter (our design). The filtered signals were downsampled to 128Hz.
For each channel, stimulus-onset-locked time windows of [0,500)ms
following each image onset was taken as the stimulus response.

Let us denote by e; the j™ epoch in a given session and let E be
the ordered set containing all epochs in the session. E is partitioned
into 10 equal-sized nonintersecting blocks, Ey; for every e; there is
exactly one k; such that e; € Ey;. For every e; acting as a test
sample, the ERP classifier is trained on the set E\Ey . During train-
ing, the classifier parameters A and -y are determined using 10-fold
validation and grid search within the set E\Ey. The kernel density
estimates of the conditional probabilities of classification scores for
EEG classifiers are obtained using scores obtained from E\Ey . The
trained classifiers are applied to their respective test epochs to get the
10-fold cross-validation test results presented in the tables.

The language model was trained as described in Section 3. For
each letter in the alphabet, 1000 random samples were drawn from
the same corpus (separate from the language model training data)
for testing purposes. For each letter sample we simulate the fusion
of EEG responses and the language model in the following way: (i)
each sample is assumed to be the target letter of a typing process us-
ing BCI; (ii) the predecessor letters of the target letter for each epoch
are taken from the corpus to calculate the letter probabilities of the
n-gram language models for each letter in the alphabet’; (iii) under
the assumption of independence of EEG responses with the previ-
ous letters selected, for each epoch, the EEG responses for every
letter is converted to EEG classifier scores; (iv) the matching model
probabilities for each letter are obtained from the language model;
(v) and the fusion of ERP classifier scores and language models was
achieved as described above, resulting in a joint discriminant score
that needs to be compared with a threshold depending on risk ratios
for missing a target letter and a false selection.

3Since subjects only focus to a single target letter without knowing the
predecessor letters of the typing process in this experiment, it is assumed
that the EEG responses created during an epoch are independent from the
predecessors.
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(0.9908, 0.9934)

(0.9946, 0.9969)

(0.9954, 0.9985)

1 sequence 2 sequences 3 sequences 1 sequence 2 sequences 3 sequences
0-gram (0.8118,0.8841) | (0.9073,0.9561) | (0.9566, 0.9848) 0-gram (0.4531, 0.5484) | (0.7000, 0.8095) | (0.8281, 0.8889)
1-gram (0.8920, 0.9218) | (0.9437,0.9731) | (0.9721, 0.9862) 1-gram (0.5556, 0.6597) | (0.7667,0.8413) | (0.9000, 0.9531)
4-gram Word-initial | (0.8918,0.9408) | (0.9544, 0.9830) | (0.9771,0.9910) 4-gram Word-initial | (0.6056, 0.6881) | (0.7392,0.8838) | (0.8860, 0.9706)
g Word-internal | (0.9747,0.9826) | (0.9857,0.9924) | (0.9909, 0.9966) g Word-internal | (0.8422,0.8992) | (0.9124,0.9663) | (0.9595, 0.9891)
8-gram Word-initial | (0.9047,0.9451) | (0.9596, 0.9843) | (0.9793, 0.9918) 8-gram Word-initial | (0.6141,0.7165) | (0.7655,0.9047) | (0.8989, 0.9712)

Word-internal

(09511, 0.9711)

(0.9725, 0.9895)

(0.9864, 0.9955)

Table 1: The minimum and the maximum values of the area under
the ROC curves obtained using fusion classifier under different sce-
narios. The comparison is made using different number of sequences
for classification, different letter positions in the word and different

Table 3: The minimum and the maximum values of the detection
rates for %5 false alarm rate using fusion classifier under different
scenarios.

language model orders.

1 sequence 2 sequences 3 sequences
0-gram (0.5500, 0.6613) | (0.8000, 0.9063) | (0.9000, 0.9688)
1-gram (0.6333,0.7969) | (0.8167,0.9048) | (0.9167,0.9841)
4-gram Word-initial | (0.6923, 0.8365) | (0.8574,0.9612) | (0.9481, 0.9899)
Word-internal | (0.9332,0.9614) | (0.9658, 0.9906) | (0.9833, 0.9965)
8-gram Word-initial | (0.7289, 0.8398) | (0.8730, 0.9645) | (0.9501, 0.9896)
Word-internal | (0.9829, 0.9903) | (0.9917, 0.9969) | (0.9946, 0.9984)

1 sequence 2 sequences 3 sequences
0-gram (0.1013, 0.3478) | (0.5000, 0.5323) | (0.6250, 0.6984)
1-gram (0.2550, 0.3710) | (0.4677,0.5831) | (0.5913, 0.6984)
4-gram Word-initial | (0.2627,0.4159) | (0.4341,0.7743) | (0.6213,0.8097)
Word-internal | (0.5967, 0.6837) | (0.7484,0.8488) | (0.8481, 0.9267)
8-gram Word-initial | (0.2940, 0.4477) | (0.4651,0.7820) | (0.6473, 0.8348)
Word-internal | (0.8100, 0.8542) | (0.8859, 0.9325) | (0.9358, 0.9724)

Table 2: The minimum and the maximum values of the detection
rates for %1 false alarm rate using fusion classifier under different
scenarios.

Fusion results were obtained for n-gram model orders n = 0, 1,
4, and 8. The EEG scores were assumed to have been evaluated for
Ng =1, 2, and 3 sequences (to evaluate the contribution of multi-
trial information) to decide if a letter under evaluation was a desired
target letter or not. In the results, only EEG data from the first Ng
sequences of the epoch was used for classification for each selected
sequence count. Receiver operating characteristics (ROC) curves are
obtained using the decision rule given in 10 for different orders of
the language model, for different number of sequences used and for
different positions of the sample target letter in the corresponding
word from the corpus. In Table 1 the area under the ROC curves
are compared where each entry contains the pair of minimum and
maximum areas over the sessions. In Table 2, Table 3, and Table 4
the correct detection rates are given for the false positive rates of %1,
%5, and %10, respectively.

6. DISCUSSION

Our analysis supports the hypothesis that using a language model
to support ERP classification can improve BCI-speller performance.
As the number of stimulus repetitions and as the model order for the
language model increase, the performance of the letter classifica-
tion as target or nontarget improves as expected. A 0-gram language
model (EEG-only) performs worst and the language model makes
significant contribution in single-trial decision-making. The lan-
guage model contributes more to letters that appear word-internally
than in word-initial position. Large model orders for the language
model can help significantly after the first letter of a word and must
be investigated further. The language model order is not as influen-
tial for the first letters in a word while number of stimulus repetitions
is; consequently, the results suggest that for first letters of words the
BCI system could switch to multi-trial mode, while for subsequent
letters, single-trial EEG evaluation with high-order language model
could be beneficial. Reduction in the number of repetitions is a di-
rect multiplier factor for reduction in time to type a given length text.
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