
1

RESEARCH ARTICLE

Huffman and Linear Scanning Methods with Statistical Language Models

BRIAN ROARK1, MELANIE FRIED-OKEN2 & ChRIs GIBBONs3

1Google Research, Portland, Oregon USA, 2Departments of Neurology, Biomedical Engineering, Pediatrics and Otolaryngology,
Oregon Health & Science University, Portland, Oregon USA and 3AbleNet, Inc., Roseville, Minnesota, USA

Abstract
Current scanning access methods for text generation in AAC devices are limited to relatively few options, most notably row/column
variations within a matrix. We present huffman scanning, a new method for applying statistical language models to binary-switch,
static-grid typing AAC interfaces, and compare it to other scanning options under a variety of conditions. We present results for 16
adults without disabilities and one 36-year-old man with locked-in syndrome who presents with complex communication needs
and uses AAC scanning devices for writing. huffman scanning with a statistical language model yielded significant typing speedups
for the 16 participants without disabilities versus any of the other methods tested, including two row/column scanning methods. A
similar pattern of results was found with the individual with locked-in syndrome. Interestingly, faster typing speeds were obtained
with huffman scanning using a more leisurely scan rate than relatively fast individually calibrated scan rates. Overall, the results
reported here demonstrate great promise for the usability of huffman scanning as a faster alternative to row/column scanning.

Keywords: Scanning; Natural language processing; Augmentative and alternative communication (AAC)

Introduction

Predictive language models, commonly designed within
the field of natural language processing, can assist
individuals with severe speech and language disabilities
to communicate more effectively with their text entry
systems, either by speeding access to an intended mes-
sage or by reducing the effort required to select that
message. For example, word completion systems use
predictive language models to identify likely words that
begin with already entered letters so that they can be
presented to the user and selected with a single key-
stroke, instead of requiring each remaining letter in the
word to be individually typed. Whether or not such word
completion systems result in true speedups in text entry
depends on many factors, including interface design,
quality of the predictive model, and the text entry speed
of the individual. Even so, word completion is a ubiq-
uitous feature of speech-generating devices (sGD) and
general mobile technologies, and is favorably used by
many people with and without disabilities.

Words are not the only linguistic units that can be pre-
dicted within an sGD. Utterance-based systems (Alm,
Arnott, & Newell, 1992; Todman, Alm, higginbotham,

& File, 2008) attempt to predict whole utterances that
are contextually appropriate, which can be particularly
useful for beginnings and ends of conversations, or
during small talk. For pre-literate sGD users, symbols
representing concepts (Gatti, Matteucci, & sbattella,
2004) or sounds (Trinh, Waller, Vertanen, Kristensson,
& hanson, 2012) can be predicted to allow for com-
munication. Finally, individuals using a single switch
for keyboard emulation (e.g., through eye blink or other
switches when direct selection is difficult or impossible)
can benefit from predictions regarding which stimuli
to present or highlight for selection. sometimes this is
achieved via linear scanning, by presenting one symbol
at a time, perhaps in order of decreasing likelihood,
and sometimes this is achieved by highlighting sets of
symbols in a spelling grid according to predictive mod-
els. Recently, a new method, called Huffman scanning,
was introduced that highlights portions of the grid in an
optimal way given a predictive model and a huffman
code (Roark, de Villiers, Gibbons, & Fried-Oken, 2010;
Roark, Beckley, Gibbons, & Fried-Oken, 2013). huffman
scanning has been shown to require far fewer keystrokes
than widely used row/column scanning, and to result
in faster text entry and strong user preferences relative

Augmentative and Alternative Communication, 2015; Early Online: 1–14
© 2015 International society for Augmentative and Alternative Communication
IssN 0743-4618 print/IssN 1477-3848 online
DOI: 10.3109/07434618.2014.997890

Correspondence: Melanie Fried-Oken, Oregon health & science University, CDRC, PO Box 574, Portland, OR 97239, UsA. Tel: 1 503 494 7587.
E-mail: friedm@ohsu.edu

(Received 14 November 2013; revised 2 December 2014; accepted 7 December 2014)

2 B. Roark et al.

 Augmentative and Alternative Communication

to row/column scanning. The above cited papers, how-
ever, present results from simulation and participants
without disabilities, as well as results with relatively
fast calibrated scan rates, leaving open the question of
whether the approach would be found to be useable by
individuals with severe motor impairments who make
up the target users of such technology. In this paper,
we present some trials to examine the importance of
scan rate on overall typing speed for a copy task; and
we present a case study of the use of this scanning
technique alongside linear scanning and row/column
scanning for a user with functional locked-in syndrome.
We find statistically significant text entry speedups over
row/column scanning using huffman scanning with a
contextual language model. These results provide a pre-
liminary indication of the utility of these methods for
individuals using scanning for keyboard emulation.

Alternative Text Entry

Literate adults who cannot use standard keyboards for
text entry because of physical impairments have a num-
ber of alternative text entry methods that permit typing,
known as keyboard emulation. A single binary switch
is a commonly used interface for alternative text entry,
and may be realized with a button press at any consis-
tent and reliable anatomical site, eye-blink or even event
related potentials (ERP) such as the P300 detected
in EEG signals (Lesher, Moulton, & higginbotham,
1998). Typing speed is a challenge in such interfaces,
yet critically important for usability. A common alterna-
tive text entry approach that uses a binary switch is row/
column scanning on a matrix of characters, symbols or
images (often referred to as a spelling grid). With the
fixed spelling grid that appears in Figure 1, the user
selects a target symbol by simply indicating yes when
the desired row is highlighted, and then indicating yes
when the desired cell is highlighted in the columns.

Of the ways in which AAC typing interfaces differ,
perhaps most relevant to the current paper is whether
the symbol positions are fixed or can move dynamically,
because dynamic layouts can facilitate integration of
richer language models. For example, if character prob-
abilities are re-calculated after each typed character,
then the characters in the grid could be re-arranged so
that the most likely are placed in the upper left-hand

corner for row/column scanning. Early research into
optimizing spelling grids resulted in the Tufts Interactive
Communicator (TIC) (Crochetiere, Foulds, & sterne,
1974; Foulds, Baletsa, & Crochetiere, 1975) and the
Anticipatory TIC (ANTIC) (Baletsa, 1977). In contrast
to the roughly alphabetic grid shown in Figure 1, the
TIC organized the letters in frequency order, so that
frequently accessed symbols occurred in the upper left-
hand corner of the grid, where less scanning is required
to access them. Most currently manufactured AAC
devices that present row/column scanning options rely
on such an optimized letter configuration for fixed spell-
ing grids. In 1987, heckathorne and his research team
described a device called PACA (Portable Anticipatory
Communication Aid) that attempted to reorganize the
grid based on probabilities given the previously typed
letter, but it was never brought to market (heckathorne,
Voda, & Leibowitz, 1987). Clearly the cognitive load of
processing a different grid arrangement after every char-
acter would slow down typing more than the speedup
due to the improved binary coding (Baletsa, Foulds, &
Crochetiere, 1976; Lesher et al., 1998). The GazeTalk
system (hansen, Johansen, hansen, Itoh, & Mashino,
2003) is an eye gaze system with a dynamically changing
7.62 10.16 cm grid. In the typical configuration of that
system, parts of the grid are fixed, but some cells contain
likely word completions or the most likely single charac-
ter continuations, both based on language model predic-
tions. hansen et al. (2003) report that users produced
more words per minute with a static keyboard than with
the predictive grid interface, illustrating the impact of
the cognitive overhead that goes along the visual scan-
ning required by dynamic grid reorganization.

Interfaces that require extensive visual scanning or
motor control, or which rely upon complex gestures
to speed typing, can make the interface difficult if not
impossible for many people who use AAC. Venkatagiri
(1999) compared different keyboards and letter pre-
sentations and found time and keystroke requirements
varied as a function of the layouts and access methods.
In this paper we will make use of a static grid, or a single
letter linear scanning interface, yet scan in a way that
allows for the use of contextual language model prob-
abilities when constructing the binary access code for
each symbol.

Binary Codes for Typing Interfaces

For any given scanning method, the use of a binary
switch to select from among a set of options (letter,
symbols, or images) amounts to the assignment of
binary codes to each symbol. There are many ways
to assign a binary code to symbols, such as extended
AsCII codes, which assign 8 bit codes to symbols, such
as the letter “m,” which has the AsCII code 01101101.
scanning methods also amount to assigning such binary
codes to symbols, different from the AsCII codes above
in that they typically are of varying length, with some
symbol codes being very short and others longer. The Figure 1. spelling grid used for standard row/column scanning.

Huffman and Linear Scanning 3

© 2014 International Society for Augmentative and Alternative Communication

binary switch for scanning is used to indicate the zeros
and ones of the code, which results in the symbol being
typed. For example, the standard row/column scanning
algorithm works by scanning each row until a selection
is made, then scanning each column until a selection is
made, and returning the symbol at the selected row and
column. For such an access method, the binary code for
a symbol could be written as a 0 for every row from the
top that does not contain the target symbol, followed by
a 1 (for the row that contains it); then a zero for every
column from the left that does not contain the target
symbol, followed by a 1 (for the column that contains
it). Not activating the switch indicates a zero bit; activat-
ing the switch indicates a one bit, and in such a way the
binary code is input. Using this scanning method with
the spelling grid in Figure 1, the binary code for the
letter “j” is 01000001; the letter “m” is 001001. Note
that this binary code for “m” is 6 bits long, shorter than
its 8-bit AsCII code.

Ordering the symbols in the grid so that the most
frequently accessed symbols are in the upper left-hand
corner of the grid (as in TIC) results in shorter binary
codes for those frequent symbols, hence less scanning
required for typical symbol access. The overall frequency
of letters, however, does not take into account what has
just been typed, but rather assigns its codes identically
in all contexts. Whether a particular character is likely or
not depends to a great extent on the previous character
and in fact the whole of the message up to that point.
In this paper we examine alternative fixed-grid scan-
ning methods that do take into account such context in
the statistical language models used to establish binary
codes for keyboard emulation.

Language Modeling for Typing Interfaces

statistical language models are common components
of AAC systems. Most commonly, language models are
used for word completion or word prediction, as men-
tioned earlier for the GazeTalk system. There has been
extensive research on methods for integrating word
completion or prediction models into AAC systems in
such a way that they achieve keystroke reductions (Dar-
ragh, Witten, & James, 1990; Li & hirst, 2005; Trost,
Matiasek, & Baroni, 2005; Trnka, Yarrington, McCoy, &
Pennington, 2006; Trnka, Yarrington, McCaw, McCoy,
& Pennington, 2007; Wandmacher & Antoine, 2007).
These keystroke reductions are achieved when a single
keystroke suffices to select the rest of a word, rather than
requiring keystrokes to select each of the remaining char-
acters of the word. Monitoring a separate region of the
interface that contains suggested completions involves
some additional cognitive load (much as with dynamic
grid reorganization), hence in some instances the actual
realized typing speedup can be far less than the key-
stroke savings might lead one to expect (Anson et al.,
2004), and in many cases a net slowdown in text entry
can occur (Koester & Levine, 1994a; 1994b). Even so,
there is some evidence that, under certain conditions,

word completion and prediction speed typing (Trnka
et al., 2007), and AAC keyboard emulation software
commonly include such components.

Word completion is one way to use language model-
ing to speed text entry, though word completion is a
method to augment an existing text entry system, rather
than a stand-alone system. A fully functional text entry
system must be open vocabulary in the same way as
standard text entry modalities, such as the QWERTY
keyboard: any word that the user wants to type should
be able to be produced by the keyboard emulation.
Word completion and prediction systems make those
predictions over a vocabulary of possible words, and if
the target words fall outside of that vocabulary (i.e., the
word is out-of-vocabulary) then it will not show up as a
word completion/prediction option, leaving the user to
type the entire target. This is particularly important for
typing items that fall outside of typical lexicons, such as
proper names, acronyms, abbreviations, or any depar-
tures from standard orthography, such as informal text
genre found in social media. The language model in the
text entry system must be able to repair spelling and
word errors by including some editing symbols such as
a delete key. In other words, it is important to design
language models to speed up a core open-vocabulary
typing function by predicting single AsCII and control
characters, rather than just multiple character strings.
The predictive model must assign a probability over
the set of possible next symbols, given what has already
been typed. This task is actually very similar to the influ-
ential shannon game (shannon, 1950), where a given
text was guessed one character at a time by people as
the means for establishing the statistical characteristics
of the language.

Beyond word completion, language models have
been used to make letter selection easier. For example,
Dasher (Ward, Blackwell, & MacKay, 2002) uses lan-
guage models to make the interface region allocated to a
character larger, thus facilitating hitting the target letter
with a gesture. These gestures involve moving eye gaze
or a mouse cursor over the physical region allocated to
the symbol. As symbols are typed, newly predicted sym-
bols gain probability and their regions grow dynamically
across the interface in a way that makes it appear that
the point of focus is moving from left-to-right through
the set of possible messages. In order to type efficiently
with the interface, Dasher requires sufficient motor
control and visual attention to continuously move the
cursor. For expert users, it can be very effective, but it
can be very challenging for individuals with motor and/
or cognitive impairments to use.

Most current AAC devices include both letter and
word prediction options. Within the NLP research
literature, the sibyl/sibylle interface (schadle, 2004;
Wandmacher, Antoine, Poirier, & Departe, 2008), simi-
lar to our brain–computer interface for spelling, known
as RsVP Keyboard™ 1 (Oken et al., 2014; Orhan et al.,
2012), involves a letter prediction component with a
linear scan of the letters in probability order (based on

4 B. Roark et al.

 Augmentative and Alternative Communication

a 5-gram character language model) instead of row/
column scanning. User feedback indicated that row/
column scanning was more tiring than a linear scan in
their system (Wandmacher et al., 2008).

In prior work (Roark et al., 2010; Roark et al., 2013),
we demonstrated that huffman scanning requires far
fewer keystrokes than widely used row/column scanning,
and results in faster text entry and strong user prefer-
ences relative to row/column scanning. however, our
previous results were derived from either user simula-
tions or study participants without disabilities, and were
achieved with relatively fast calibrated scan rates. It is
not yet known whether huffman scanning is viable or
preferred by individuals with severe motor impairments
who are the target users of such technology. Obtaining
results from people who rely on the assistive technol-
ogy is critical if we are to understand what systems are
viable, important and preferred. If we do not obtain
patient-centered outcomes or conduct trials for practi-
cal use, then development efforts may become obsolete
quickly, and our goals may not meet the needs of the
very individuals we are addressing. As each assistive
technology research paradigm must include trials with
users, in this paper we present results from users with
and without disabilities.

We will describe three experiments that attempt
to determine how to leverage contextually sensitive
language models in fixed-grid scanning beyond word
completion and prediction; and to quantify the degree
to which language models can make the diverse scan-
ning interfaces competitive in terms of typing speed.
Before doing so, however, we will first explicitly review
our terminology, hopefully to avoid any confusion when
describing methods and results.

Terminology

This paper is presenting work at the intersection of
several disciplines: AAC, computational linguistics, and
human-computer interaction. As a result, what may
seem to be the most natural term for a concept will vary
across readers. Further complicating this is the occa-
sional lack of field-internal consensus on the appropri-
ate term. To aid interdisciplinary understanding, and
avoid misinterpretation of our methods or results, we
present terminology and how it relates to prior usage.

Symbols, Words and Strings. We use the terms symbol and
character interchangeably to describe the smallest items
being typed. Typically these are letters, but can include
editing or formatting symbols such as backspace, delete
or whitespace. A word is a whitespace delimited string
of symbols. An n-gram is a string of symbols of length n
(e.g., “abcd” is a 4-gram of letters).

Bits, Switches, Scan Steps. In direct selection systems,
the symbol is the smallest unit that can be selected,
and typing performance is often measured in terms of
keystrokes (i.e., the number of select gestures required

to enter the message). In scanning systems, multiple
user actions are generally required to type a single
symbol, and these actions can be referred to in vari-
ous ways. Lesher et al. (1998) refer to base actions as
switches, and these include switch activations (also called
keypress or switch hit) or timeout (absence of switch
hit). Recently, Mackenzie (2012) referred to switches
in the Lesher et al. (1998) sense as scan steps, and advo-
cated scan steps per character as a measure of scanning
efficiency. Taking the perspective of binary codes as we
have done in this paper, each of these switches or scan
steps corresponds to a bit, hence bits-per-character is an
equivalent measure to switches-per-character or scan-
steps per-character. Given the focus on binary coding in
this approach, we will discuss bits-per-character when
presenting results.

Optimal Bits per Character, Errors and Long Codes. The
ideal users would activate the switch always and only
when required to type their target character. At each
position in a test sequence, we can calculate the num-
ber of bits required to type the character if there are
no errors. We report this as optimal bits per character,
and this is the sort of measure reported in scanning
simulations, such as those by Lesher et al. (1998) and
MacKenzie (2012). Real users, however, make errors,
and these errors can either result in the wrong symbol
being typed, or in scanning past the target symbol but
correctly typing it when the system reaches it again. We
term this error as a long code, since the binary code that
is used to select the symbol is longer than the optimal
code for that symbol. A long code can result from either
a timing error (failure to activate switch) or selection
error (erroneous switch activation). For example, in
row/column scanning, the target row may be missed or
the wrong row selected, but this does not necessarily
result in the wrong symbol being typed. We report both
error rate (percentage of typed symbols that were incor-
rect) and long code rate (percentage of correctly typed
symbols that had a longer than optimal code).

Scan rate, Dwell time, Auto scan, Step scan. We designed
our scanning interfaces so that one of the user actions is
to refrain from activating the switch and allow a timeout
to trigger. Dwell time refers to the duration of the time
interval during which the system waits for switch activa-
tion. A short dwell time produces a faster rate of scan-
ning, since the user has less to activate the switch before
the system records a timeout and moves on. In auto
scanning, a timeout indicates that no selection has been
made; in step scanning, a timeout indicates selection.

Methods

Participants

Participants were 16 literate adults without disabilities
and one man with severe speech and physical impair-
ments secondary to brainstem stroke. The participants

Huffman and Linear Scanning 5

© 2014 International Society for Augmentative and Alternative Communication

without disabilities were students and faculty at the Ore-
gon health & science University with reportedly intact
cognitive, motor, sensory and language skills. They were
not familiar with our keyboard emulation interface prior
to participation in the study. GB, the participant with
locked-in syndrome, is a 36-year-old male, who had a
brainstem stroke at the age of 20 and has been function-
ally locked-in ever since. he retains some slight head
movement and has adequate visual scanning. he uses
the Words Freedom 2000TM 2 speech generating device
with EZ Keys softwareTM in row/column scanning mode
and a specsTM 3 switch placed on the AbleNet Univer-
sal Arm Mounting systemTM 4 by his right temple for
some of his email communication. For the majority of
his expressive language, however, Greg depends on co-
construction with a partner-dependent alphabet audi-
tory scan and a familiar communication partner.

GB became quadriplegic after he completed Us mili-
tary service. At the time, he was enrolled in community
college and worked as a landscaper. he currently lives
with his mother and sister, and relies on the assistance
of three paid caregivers during daytime hours for all
activities. GB has been an active member of the RsVP
KeyboardTM research team since 2006. he attends
monthly team meetings at Oregon health & science
University, where he provides input and suggestions for
all research and development issues that arise. he has
published his thoughts about BCI for AAC in Speak
Up, the publication of the United states society for
Augmentative and Alternative Communication (Bieker,
Noethe, & Fried-Oken, 2011). GB attended the 2013
International Brain-Computer Interface (BCI) Meeting
in Monterey, CA where he presented a workshop on
AAC for BCI (huggins et al., 2015) and participated in
the BCI Users’ Forum in front of 350 conference par-
ticipants (Peters et al., 2014). Of note, all presentations
were prepared using partner-assisted auditory scanning.
he finds technology to be too slow, fatiguing, and miss-
ing the engagement and personal attention that defines
verbal communication and interaction for him.

GB was first introduced to AAC for writing with the
Apple IIe computer6, Discover: KENX interface7, and
Co:Writer software8 by Don Johnston, Inc. Over time,
he switched to a Words Freedom 2000TM 2 system,
with which he uses stored phrases and generates new
messages with one switch row/column scanning. he
is constantly looking for alternatives. he completed a
number of trials with eye gaze systems. he found that
the eye gaze devices created a physical barrier between
him and his communication partners and he prefers to
look at the people he is interacting with. GB relies on
assistive technology for short written text only. Due to
his dependence on others for system set up and main-
tenance, and the time demands to start using AAC, he
reports that he does not like to use AAC for spontaneous
conversation. he states that there is a place for AAC,
but he prefers to use partner-assisted auditory scans for
speaking with others or preparing long text. Even though
he has a portable laptop and wheelchair mount, he finds

the AAC system intrusive and difficult to take with him.
Placement of the switch and switch mount is a constant
barrier to device use, and it must be readjusted multiple
times during each use. he enjoys the participation of his
caregivers and verbal engagement during the message
formulation process, and finds that it is much quicker
to ask his familiar caregiver to predict word and phrase
completions then to rely on the AAC system. GB uses
his row/column scanning device for short emails only.
Message production rates are slow; he is about 60%
accurate with initial scanning selections and must delete
or retype letters often. By nature, he reports that he is
not a big talker and relies on short messages rather than
long stories. he enjoys humor and sports, often con-
necting with others in short emails about teams or jokes.
he is constantly looking for a better switch option, and
is currently investigating a laser switch. GB is a BCI
evaluator, and tests all system upgrades and treatment
protocols that are developed for our new assistive tech-
nology. since the technology is not yet reliable for home
use without significant technical support, he does not
rely on BCI for composing personal text. GB is very
aware of the speed challenges associated with any AAC
device. he states that he often fatigues when using AAC
technology, and the attention demands for accuracy are
high. At this time he is willing to trade the independence
of AAC technology for a faster, more personal system
that involves one-on-one interaction and constant
engagement with a communication partner.

Materials

Corpora and Character-based Language Modeling. Char-
acter n-gram models were used for this experiment. We
follow Roark et al. (2013) in using Witten-Bell smoothed
n-gram language models, and refer the reader to that
paper for more extensive presentation of these methods.
Briefly, each character’s probability is conditioned on
the previous seven characters, and the probabilities are
regularized using widely known methods so that even
unobserved sequences receive some probability. Models
are trained on newswire text from the New York Times
portion of the English Gigaword corpus (LDC2007T07)
and individual words taken from the CMU Pronouncing
Dictionary (www.speech.cs.cmu.edu/cgi-bin/cmudict),
which were appended to the newswire corpus to give
better word coverage. The resulting corpus was prepro-
cessed for the current evaluation, as detailed in Roark
et al. (2010) and Roark et al. (2013). The pre-processing
was carried out so as to yield text that was actually typed
– as opposed to, say, pasted signatures, bylines, tabular
data, automatically generated text, etc. – hence of some
utility for modeling the kind of language that would be
produced in English typing applications. Further, the
pre-processing reduced text duplication in the corpus.

Binary Codes. The language models described above
give us the means to assign a probability to each sym-
bol in the symbol set, given what has been typed up to

6 B. Roark et al.

 Augmentative and Alternative Communication

that point. The symbol set is then sorted in decreasing
probability order and a binary coding tree is built over
the symbol set, so that the binary code assigned to each
symbol differs depending on the context, i.e., what has
been typed up to that point. huffman and linear scan-
ning approaches make use of these binary coding trees,
and we refer the reader to Roark et al. (2013) for techni-
cal details on this approach.

Stimuli

All participants were presented with the text entry
phrase set from MacKenzie and soukoreff (2003) to
evaluate typing performance. Of the 500 phrases in
that set, 20 were randomly set aside for testing, and
the other 480 were available as stimuli during training
and calibration phases. Of the 20 evaluation strings, five
were used in this study: I can see the rings on saturn,
Watch out for low flying objects, Neither a borrower nor
a lender be, An offer you cannot refuse, and The facts
get in the way.

Scanning Paradigms. The interface developed for this
study presented phrase copy tasks to measure typing per-
formance under six scanning paradigms. The scanning
paradigms were: (1–2) row/column scanning, both auto
scan (switch activation for character selection) and step
scan (absence of switch activation for character selec-
tion); (3–4) huffman scanning using either a unigram
language model (no context) or an 8-gram language
model to derive the huffman codes; and (5–6) scan-
ning with a linear scanning code, either on the six-by-six
grid like the other scanning approaches, or using RsVP
(Rapid serial Visual Presentation) paradigm, where only
one symbol at a time is flashed on the screen. For each
paradigm, participants saw a target phrase with instruc-
tions to type the phrase exactly as displayed. Any incor-
rect symbols were deleted by selecting the backspace
symbol followed by selection of the correct symbol.

The same optimized letter matrix is used in all grid
scanning conditions, based on letter frequency.

Row/column Scanning. The typing interface for row/
Column scanning is shown in Figure 2(a). The target
string to be copied is presented to the participant at the
top of the window, and immediately below this is the
buffer showing what has already been typed. Whitespace
between words (represented here by the underscore
character, shown in the grid’s upper left-hand corner)
also must be typed correctly by the participant. When
an incorrect character is selected, the error is shown in
red with a backspace symbol immediately following – as
shown in Figure 2(b) – to assist users in recognizing that
an error has been made and must be corrected.

For row/column scanning, the cursor returns to the
top row after passing the bottom row without a selection.
Once a row has been selected, the cursor wraps around
the letters three times. If no cell is selected, then scanning
continues from the following row. This provides a recov-
ery mechanism if an error in row selection is made.

Huffman Scanning. When configured for huffman scan-
ning (Roark et al., 2010; Roark et al., 2013), the grid
remains the same but the highlighting differs, as shown
in Figure 3. In this mode, a huffman code divides the
symbols into two sets (0 and 1). highlighting of a cell
indicates that the symbol is in set 1. Because the divi-
sion into two sets occurs in order to reduce the number
of selections required to reach the desired symbol, the
highlighted cells cannot generally be contiguous. It is
the relaxation of requiring highlighting to be contiguous
that allows the use of the language model to determine
the code. Non-contiguous highlighting in scanning is
rare, but has been discussed (Demasco, 1994). As far as
we know, however, this is the first time non-contiguous
highlighting has been used for dynamic, contextually-
sensitive coding. huffman coding has been applied pre-
viously to a scanning paradigm (Baljko & Tam, 2006),
though with a unigram model (i.e., no context) in a way
that ensured contiguity of highlighted regions.

To understand how huffman scanning works, we
provide the following example, which calculates the
probability of letter selection from all possible letters

Figure 2. The typing interface presented to participants with and without disabilities (a) for row/column scanning and (b) after an error was entered
during the copy task.

Huffman and Linear Scanning 7

© 2014 International Society for Augmentative and Alternative Communication

(huffman, 1952). suppose the partial phrase “his name
is Tom Rob” has been typed, and we are using huffman
scanning to type the next letter. The current intended
name might continue with an i (e.g., Robinson), an e
(Roberts), a b (Robbins), and so on. Or perhaps the pre-
viously typed b was an error, hence the current target is
the delete symbol. For the sake of illustration, suppose
that the probabilities for the most likely symbols are
as follows: prob(i) 0.3; prob(e) 0.3; prob(b) 0.2;
and prob(delete) 0.1. The rest of the letters share the
remaining 0.1 of probability, summing properly to 1.

The symbols are divided into two sets, so that each
set has as close to half of the probability mass as is
possible. (Recall that a set’s probability is the sum of
the probabilities of its members.) Note that, given the
probabilities above, the letters i and e cannot end up in
the same set, since together they have total probability
0.6, which would lead to the other set having probabil-
ity 0.4, less than the optimal 0.5. If, instead, we put i
and b in one set, and everything else in the other set,
both sets will have the desired probability of 0.5. The
smaller set (i and b) is then highlighted and the system
observes whether there is switch activation or not within
the specified dwell time. Note that the letter e, which
is tied for the highest probability, is not highlighted.
highlighting of a cell in the grid does not indicate that
a cell is particularly likely or not; rather it simply indi-
cates whether, after dividing the symbols up, it is in the
highlighted set.

In this novel huffman scanning approach, the high-
lighted set of symbols is selected by switch activation.
If a selected set is just a single character, that charac-
ter is typed. If there is more than one symbol in the
selected set, then the binary code is recalculated for
the next presentation of highlighting. This is done in
such a way that, until a symbol is typed, no symbol is
ruled out. If the switch is activated, so that the high-
lighted set (i and b) is selected, there is some small
probability (0.1) that the selection was unintended
(i.e., the target symbol is in the other set). Based on
this, we recalculate all the symbol probabilities, and

the new probability of letter i works out to be just over
0.5, so it will be placed in its own set for the next step
of the scanning. scanning continues like this until a
single character is selected. After every scan step, the
huffman or linear scanning codes are recalculated,
taking into account the probability of an error, in such
a way that non-selected letters retain some probability
of being selected in the system. In other words, even
if the wrong character is selected, thus reducing the
probability of the target symbol, subsequent correct
selections will gradually increase the probability of the
target symbol, eventually leading to it being typed. The
recovery procedure with huffman scanning does not
resemble the recovery loop used for row column scan-
ning. We refer the reader to Roark et al. (2010) and
Roark et al. (2013) for further technical discussions on
how these codes are recalculated taking into account
an error rate parameter.

Linear Scanning. By highlighting a single cell at a time,
in descending probability order, linear scanning occurs
on the grids shown in Figures 2 and 3. Alternatively,
linear scanning occurs with an RsVP interface, shown
in Figure 4, which presents single characters serially.

Procedure

There are three stages to the experimental paradigm:
training a participant to understand the different
scanning tasks, calibrating the scanning rate for each
task, and completing the experimental scanning tasks.
Participants completed phrase copy tasks with the
aforementioned six different scanning paradigms. Par-
ticipants without disabilities engaged in all six scanning
paradigms; GB participated in four of these condi-
tions. Participants were seated at a table in front of a
laptop that presented our keyboard emulation software.
The participants without disabilities selected targeted
symbols by using their dominant hand to hit a Jelly
Bean switch™ 5 on the tabletop; GB used his chin to
depress a specs switch attached to the Universal switch
Mounting system on his wheelchair.

Figure 3. The typing interface presented to participants with and
without disabilities during the huffman scanning paradigm.

Figure 4. The typing interface presented to participants with and
without disabilities during the RsVP paradigm.

8 B. Roark et al.

 Augmentative and Alternative Communication

Training. Participants were presented with a short dem-
onstration of the interface by an author, which involved
typing a short string (“a dog”) using row/column auto
scan, row/column step scan, and huffman scanning.
The demonstration included target selection, typing the
wrong symbol, deleting a symbol, typing a space, and
scanning past the target symbol. Following this simple
demonstration, the participants were presented graphi-
cally with overall instructions for the task. A self-paced
instruction module explained details about the task to be
completed. For each of the typing conditions, condition-
specific instructions were presented. These instructions
explained how keyboard emulation functions for each con-
dition and reiterated important overall task instructions.
The scan rate for each condition, specifying how long to
wait for a button press before advancing, was set for each
individual during the training/calibration session.

Individual Scan Rate Calibrations. Each participant’s scan
rate must be calibrated before the experimental task is
presented. We will briefly review the calibration proce-
dure here and refer the reader to Roark et al. (2013) for
full details. Because the huffman and linear scanning
approaches require the individual to react to what is
presented on the screen, the scan rate is constrained by
reaction time. In contrast, row/column scanning allows
for anticipation and planning, since the current configu-
ration of the highlighting determines the subsequent
configuration of the highlighting. One might expect,
then, that faster scan rates would be more suited to row/
scanning than compared to the other approaches being
investigated. Auto scan and step scan, however, are
substantially different in terms of the control required
to advance scanning versus selection, hence, one might
expect these scan rates to also differ. Calibration was
thus conducted for three scenarios: row/column step
scan, row/column auto scan, and huffman scanning
with a unigram language model. This latter rate was
then used for all non-row/column scanning conditions,
all of which are constrained by reaction time.

Calibration is run in two phases. The first phase
begins with a relatively slow scan rate and speeds up by
200 ms after each correctly typed target string until it
reaches a scan rate at which the participant is unable to
successfully type the target. The second phase for each
condition (held after a period during which other meth-
ods are used) begins with a scan rate 500 ms slower
than the fastest scan rate at which the participant failed
in the prior phase, then speeds up by 100 ms after each
successful target. After reaching a scan rate that is too
fast for the participant to successfully type the target,
the scan rate decreases by 50 ms until the subject can
successfully type the target, and this final scan rate is
taken as the final calibrated rate for that individual.

Experimental Testing. Participants typed the same five
phrases from the test set in six distinct conditions, the
ordering of which was randomized for each participant.
There were two row/column scanning conditions, auto

and step scan; two huffman scanning conditions, with
codes derived from either the unigram language model
or the 8-gram language model; and two linear scanning
conditions, either scanning on the 6-by-6 spelling grid
or RsVP single letter presentation. Both linear scanning
conditions used codes derived from the 8-gram language
model. Identical instructions to those given during the
calibration phase were provided in each condition, and
a practice phase preceded the typing of phrases from the
test set. Once the participant met the error rate criterion
performance (10% error rate or lower) for that condi-
tion, he or she advanced from practice phase and was
given the test phrases to type.

Results

Experiment 1: Calibrated Scanning by Participants
Without Disabilities

The 16 native English speakers without disabilities
calibrated the scan rate for each scanning paradigm at
the start of the experimental session, and the results
are presented in Table I. The raw results presented for
this experiment are also reported in Roark et al. (2013),
though we provide a statistical analysis of the results and
subsequent discussion here for the first time.

This is a copy task where participants are instructed
to correct all errors and copy the presented test string
exactly. To avoid scenarios where the participant was
unable to correct all errors and successfully complete
typing a particular stimulus (due, perhaps, to the par-
ticipant not recognizing that an error has been made
or being unable to recover from a rapid sequence of
many errors), a trial was interrupted if the total num-
ber of errors on the stimulus reaches a threshold. After
interruption, the participant was prompted to type the
same target phrase again, starting from the beginning.
The total time and number of keystrokes both before
and after interruption were counted when calculating
performance. For the current experiment, the threshold
was set to 20 errors, and just two participants reached
this threshold, for one phrase each in a row/column
scanning condition (see Table II).

Table II (first presented in Roark et al., 2013) reports
typing speed and related measures (means and stan-
dard deviations) for the participants. Typing speed is
presented as characters per minute, and the number of
keypress or non-keypress (timeout) events used to type
the characters is presented as bits per character. (see
the earlier Terminology section for a detailed discussion

Table I. Calibrated scan Rates.

Scan rate (ms)
Scanning condition M (SD)

Row/column step scan 419 (95)
Row/column auto scan 328 (77)
Huffman and linear scan 500 (89)

Huffman and Linear Scanning 9

© 2014 International Society for Augmentative and Alternative Communication

of these terms.) Bits per character does not correlate
perfectly with typing speed, since a timeout by defini-
tion consumes the fully allotted trial time, and a key
press is typically much shorter. We also present rates of
two kinds of errors. Note that, to successfully complete
the trial, the stimulus must be typed correctly. One kind
of error involves typing the wrong symbol, then deleting
and retyping the correct symbol. We present this sort of
mistake as error rate – the number of incorrect symbols
typed divided by the total symbols typed. Another kind
of mistake in typing a symbol is to scan past the symbol
without typing it, but eventually return to that symbol
and type it correctly. This mistake results in extra key-
strokes, which means that the binary code used to select
the character was longer than what it would have been
optimally. We present this sort of mistake as the long
code rate – the percentage of correctly typed symbols
that required a longer than optimal code. To see how
a perfect user would have performed, we present the
optimal bits per character that could be achieved with
each method.

We used a paired-sample t-test to compare the typ-
ing speed of the subjects across the six conditions, with
Bonferroni correction based on 15 comparisons. The
huffman unigram condition was significantly slower,
p 0.001, than each of the other conditions, approxi-
mately twice as slow as huffman 8-gram. Both the
huffman 8-gram, p 0.01, and Linear grid 8-gram, p
 0.05, conditions were significantly faster than row/
column auto scan. The huffman 8-gram condition was
also significantly faster than the RsVP 8-gram condi-
tion, p 0.05. None of the other differences were statis-
tically significant.

Table III (originally from Roark et al., 2013) presents
mean scores for four questions: I was fatigued by the end
of the trial. I was stressed by the end of the trial. I liked

this trial. I was frustrated by this trial. The responses
showed a consistent preference for huffman and linear
grid conditions with an 8-gram language model over the
other conditions (see results in Table III).

Experiment 2: Fixed Rate Scanning by Participants
without Disabilities

having a calibration session, and setting scan rates at
the fastest scan rate at which participants can perform
the task within stipulated error rate bounds, ensures
that methods that allow for anticipation, such as row/
column scanning, get some advantage in terms of char-
acters per minute that might be produced. however,
the fastest scan rate at which the task can be accom-
plished is not the same as the scan rate that results in
the most characters per minute. In fact, the relatively
high error rates and long code rates that were observed
in some of these conditions may lead one to believe
that these scan rates were not optimal in this respect
and that a more leisurely scan rate which resulted in
fewer errors and missed targets may in fact yield faster
typing. From these considerations, we ran a follow-up
experiment using a fixed scan rate of 600 ms across
all of the conditions. Note that there are many ways
in which a scan rate can be chosen for a particular
individual, through the use of more complex calibra-
tion methods or with the help of a speech-language
pathologist. Rather than individualizing, we chose a
rate that was comfortable across all participants and
conditions, but fast enough to avoid frustration. The
same participants were used for this experiment as for
Experiment 1, and the testing protocol was identical
to that experiment. Participants had at least one day
between Experiment 1 and Experiment 2. Results are
presented in Table IV.

Table II. Typing Results for 16 Users on Five Test strings (Total 31 Words, 145 Characters), Under six
Conditions, with Calibrated scan Rates.

Speed (cpm)
M (SD)

Bits per character
Error rate

M (SD)
Long code rate

M (SD)Scanning condition M (SD) opt

Row/column step scan 21.2 (3.8) 8.4 (2.5) 4.5 6.2 (4.4) 30.4 (17.9)
Row/column auto scan 19.6 (3.2) 8.0 (1.7) 4.5 4.6 (3.0) 28.9 (13.3)
Huffman unigram 12.8 (2.3) 7.9 (1.7) 4.4 4.4 (2.3) 35.1 (13.0)
Huffman 8-gram 24.5 (3.9) 4.0 (0.9) 2.6 4.2 (2.2) 15.4 (12.5)
Linear grid 8-gram 23.2 (2.4) 4.1 (0.6) 3.4 2.4 (1.7) 4.3 (3.4)
RSVP 8-gram 20.9 (4.4) 5.5 (2.2) 3.4 7.1 (4.8) 4.2 (3.7)

Table III. Mean Likert scores to Experiment 1 survey Questions (5 strongly Agree; 1 strongly
Disagree).

Row/Column Huffman Linear

Question step auto 1-grm 8-grm grid RSVP

I was fatigued by the end of the trial 3.1 1.9 3.3 1.9 1.9 2.8
I was stressed by the end of the trial 2.4 2.0 2.5 1.7 1.6 2.6
I liked this trial 2.1 3.5 2.6 3.9 3.8 2.9
I was frustrated by this trial 3.4 1.8 3.1 1.7 1.7 2.9

10 B. Roark et al.

 Augmentative and Alternative Communication

In only two of the conditions (auto row/column scan-
ning and linear grid scanning) were the typing speeds
in characters per minute slower than in the calibrated
condition, and neither slowdown reached statistical
significance. In most conditions, the reduction in error
and long code rates offset the slowdown in scan rate,
resulting in significantly faster typing for both huffman
scanning conditions and the RsVP 8-gram condition.
Within this experiment, we again find that the huffman
unigram condition was significantly slower than each
of the other conditions, p 0.001, again using paired-
sample t-test with Bonferroni correction based on 15
comparisons. The nearly factor of two slowdown in this
condition relative to the other huffman scanning con-
dition was also preserved. We also find that the huff-
man 8-gram condition is significantly faster than every
other condition, p 0.001. Finally, the row/column step
scan, linear grid 8-gram and RsVP 8-gram conditions
were all significantly faster than row/column auto scan,
p 0.001. None of the other differences were statisti-
cally significant.

Experiment 3: Scanning by Participant with Severe Speech
and Physical Impairments

After examining performance using these new scanning
methods for participants without disabilities, we turned
to performance of a man who uses AAC. GB partici-
pated in four of the original six conditions. step scan-
ning was omitted because it requires a greater number
of key presses than auto scanning methods, and was too
difficult for GB. Based on the prior results, we see that
the huffman unigram method is much more difficult
for the users, hence this was also omitted. The remain-
ing four conditions were preserved: auto scan row/
column, huffman scanning with an 8-gram model, lin-
ear scanning on a grid, and linear scanning with RsVP.

Rather than using an automatic scan rate calibration
method, we provided the user with a training session,
in which a participating speech-language pathologist
established the correct position of the switch and manu-
ally calibrated the scan rate of various conditions to be
comfortable for the user. A scan rate of 1 s was estab-
lished for the row/column scanning condition and 1.5 s
for the other conditions.

Table V presents GB’s typing speed and other statis-
tics for the four conditions, with the same test stimuli as
the previously presented results. To no surprise, typing
speed was slower for all conditions when using GB’s 1 s
versus 600 ms scan rates in the prior experiment. Error
rates and long code rates were also increased, except for
the linear grid 8-gram rate where GB’s rate matched the
rate of the other participants. For GB, huffman 8-gram
yielded a 60% speedup over row/column auto scanning,
more than the 50% speedup observed in Experiment
2. Table VI presents GB’s responses to the user survey,
showing a preference for the row/column scanning and
huffman scanning versus the linear scanning conditions,
presumably due to frustration with positions requiring a
long linear scan through many options. In addition, the
RsVP condition was the one judged to be fatiguing and
stressful. GB, as disability consultant to our RsVP BCI
project, also provides regular feedback on the focused
attention that is needed for the RsVP Keyboard, com-
menting often that it would be difficult to use this para-
digm for message generation (see Table VI).

Discussion

The experimental examination of language-model
effects within static scanning grids is a timely endeavor,
as AAC is becoming more available through sGDs and
mobile technologies to literate individuals with severe

Table IV. Typing Results for 16 Users on Five Test strings (Total 31 Words, 145 Characters), Under six
Conditions, with Fixed 600-ms scan Rate.

Speed (cpm)
M (SD)

Bits per character
Error rate

M (SD)
Long code rate

M (SD)Scanning condition M (SD) opt.

Row/column step scan 22.3 (2.3) 6.2 (0.9) 4.5 2.2 (1.6) 17.5 (9.1)
Row/column auto scan 18.1 (2.2) 5.6 (0.7) 4.5 3.3 (2.7) 10.2 (5.8)
Huffman unigram 14.8 (2.0) 6.0 (0.8) 4.4 2.6 (2.1) 18.2 (7.0)
Huffman 8-gram 27.3 (3.4) 3.1 (0.4) 2.6 2.1 (2.3) 5.8 (4.6)
Linear grid 8-gram 22.6 (1.1) 3.7 (0.2) 3.4 2.0 (1.6) 0.8 (0.9)
RSVP 8-gram 23.7 (2.3) 3.9 (0.5) 3.4 2.8 (2.4) 1.0 (1.0)

Table V. Typing results for One AAC User on Five Test strings (Total 31Words, 145 Characters), Under Four
Conditions, with Fixed scan Rates (1 s for Row/Column scanning; 1.5 s Others).

Bits per character

Scanning condition Speed (cpm) Subject Opt. Error rate Long code rate

Row/column auto scan 6.0 8.5 4.5 4.4 32.2
Huffman 8-gram 9.7 3.8 2.6 3.8 14.6
Linear grid 8-gram 9.5 3.9 3.4 2.0 5.4
RSVP 8-gram 7.5 5.2 3.4 5.5 5.2

Huffman and Linear Scanning 11

© 2014 International Society for Augmentative and Alternative Communication

speech and physical impairments. Adults with acquired
impairments are coming to the task of single-switch
spelling with expertise in letter prediction and word
prediction gained from using smart phones and word
processors. They are asking sophisticated questions
about how to increase typing speed for spontaneous
conversation, given their past experiences with mobile
technology and computer access. The field of AAC has
not kept pace with the rapid computational language
and machine learning advances that are occurring for
general technology. With renewed interest from both
computational linguists and AAC experts in language
enhancement for functional communication, we must
begin to analyze binary switch scanning performance
with language, cognitive, sensory/motor and environ-
mental variables. The field of natural language pro-
cessing can offer new avenues of research for the AAC
field to make assistive technology for communication
more effective and efficient (Darragh & Witten, 1992;
higginbotham, Moulton, Lesher, & Roark, 2012). The
introduction of huffman coding as a plausible scanning
technique is one such endeavor.

Despite the small study size (17 study participants,
including just one literate adult who used AAC), sev-
eral key results are apparent. First, huffman scanning
requires a strong language model to be a viable alterna-
tive to row/column scanning. When just using a unigram
model, huffman scanning was significantly slower than
either of the row/column scanning approaches. For the
three methods that do not make use of the contextual
language model (unigram huffman scanning and both
row/column scanning approaches), we observed a rela-
tively high long code rate, leading to a near doubling of
the length of codes required for each character in the
absence of errors and a slow scan rate. The slow scan
rate reduces the error rates, but does not yield improved
speeds for any of these methods.

second, the contextual model significantly improves
huffman scanning. The 8-gram language model reduces
the optimal bits per character for huffman scanning over
the unigram model, and reduces the difference between
the actual bits per character achieved by the participants
and the optimal. This results in a near doubling of typing
speed over huffman scanning with the unigram model.
With the faster calibrated scan rates, linear scanning on
the grid with the 8-gram model yields nearly the same
bits per character as huffman scanning. This effect

results from a decrease in the error rate and long code
rate with huffman scanning. We believe the reduced
error rate is influenced by easier visual scanning, result-
ing from just one cell being highlighted at each step,
drawing the eye to the target cell more quickly. The long
code rate remains substantially lower for linear scanning
than for huffman scanning, even at the more leisurely
fixed scan rate of 600 ms. This same result was observed
for GB, who noted his preference for linear scanning.

Finally, scanning with the RsVP interface is slower
than huffman scanning with an 8-gram model or linear
scanning on the grid, due to an increase in error rate.
Even so, it yields speeds commensurate with row/column
scanning. Finding a symbol on the grid and waiting for
its cell to be highlighted seems to be a slightly easier task
than recognizing the symbol that appears in the single
RsVP screen and reacting, even for literate adults with
no visual attention challenges. The fact that this task
became easier with the slower fixed scanning rate (error
rates decreased dramatically) demonstrates the extra
time demands of recognition and reaction of this condi-
tion versus just watching for a cell in the grid to light up.

The results from different scanning paradigms speak
to a pressing need to evaluate the visual processing
demands and working memory requirements of all
alphabetic scanning systems. While our work highlights
the contribution of language models to scanning, there
are many unexplored variables that affect performance.
Wilkinson, hennig, soto, and Zangari (2009) empha-
sized the multiple and unique cognitive processing
demands of AAC technologies, without discussing
alphabetic scanning paradigms for literate users. Thistle
and Wilkinson (2012) discuss the attention demands of
dynamic screens and grid layouts with symbols for chil-
dren. Visual attention patterns of adult AAC users with
aphasia have been explored, again in dynamic screens
rather than scanning matrices (Thiessen, Beukelman,
Ullman, & Longenecker, 2014). The rapid chang-
ing demands of letter-based scanning paradigms are
another visual presentation that deserves our attention,
and can account for significant variation in learning and
use by literate individuals with and without disabilities.
Additional variables, including the specific method of
error recovery in a particular scanning approach, the
possibility of imperfect scan rate calibration, and the
demands of the copy task itself could have an impact
on typing speed. In previous work, we controlled the
level of difficulty of phrases in the copy task and con-
tributions of the language model to letter selection,
and found that both variables affect alternative access
spelling, in this case with a brain–computer interface
(Orhan et al., 2012). It is difficult, with user studies,
to control all influencing factors. When simulations are
conducted, as in Lesher et al. (1998) or MacKenzie
(2012), all variables are controlled to examine a full
range of factors that affect optimal configurations of
typing systems. The current results cannot be compared
easily with the outcomes from simulations; or, for that
matter, to results with an ambiguous keyboard such as

Table VI. Likert scores for AAC user survey Questions (5 strongly
Agree; 1 strongly Disagree).

Question
Row/Col

Auto
Huffman

8-grm
Linear
grid

Linear
RSVP

I was fatigued by the end
of the trial

1 1 1 3

I was stressed by the end
of the trial

1 1 1 5

I liked this trial 5 5 1 1
I was frustrated by this trial 1 1 5 5

12 B. Roark et al.

 Augmentative and Alternative Communication

hansen et al. (2003) or MacKenzie & Felzer (2010).
The conditions under which we collected data (two user
studies for individuals with and without disabilities)
provided substantially different testing situations than
MacKenzie (2012), which included simulations and
word completion. Reviewing different stimulus condi-
tions (simulations versus user studies), language model
contributions (word completion versus no word comple-
tion), and keyboards (ambiguous versus unambiguous)
will lead to important and interesting questions that this
paper has left unresolved.

Results for the 16 participants without disabilities
and for GB, the participant with locked-in syndrome
for 20 years, were similar for four conditions. For both
non-disabled and disabled participants, the huffman
scanning is the fastest of the options, but linear scan-
ning on a grid is competitive due to a lower long code
rate. Note that for the linear scanning on the grid, GB’s
bits per character almost mirror the mean of the partici-
pants without disabilities (Table IV), so that the differ-
ences in typing speed can be attributed to differences in
scan rate. This provides evidence that people who use
AAC and present with only physical impairments per-
form within normal limits for age-matched peers. Even
though GB prefers partner-assisted auditory alphabet
scanning, his technology use resembles that of his non-
disabled peers. he demonstrates that spelling-based
keyboard interfaces with letter and word prediction for
individuals who are locked-in are viable clinical options,
if the individuals retain cognitive and language skills for
functional expression.

GB’s participation here highlights the unique role
that people with severe disabilities should play in all
AAC research. While disability advocates remind us of
“nothing about me without me” (Delbanco et al., 2001),
this concept is not always practiced during technology
research and development. Often we read about experi-
ments with symbol sets or device layouts that have been
presented to children without disabilities, or engineer-
ing efforts that simulate conditions without including
potential users. In fact, the challenges that are posed to
people with severe speech and physical impairments are
the very barriers that we must address in research. These
barriers may affect attitudes toward adoption or aban-
donment, the availability of customization options and
preferences for device features, and the ultimate chal-
lenge of real time implementation. GB and other indi-
viduals with disabilities who are research consultants or
disability advocates are the experts who we must learn
from. Their opinions, equipment testing, feedback and
experimental results validate research and development
efforts. GB tells us that he participates in research so
that he can help others who are less fortunate than he is.
By examining his behavior, we are given an opportunity
to scientifically answer the real questions that should be
asked. Inclusion of GB and others with complex com-
munication needs provides a level of AAC validity that
leads to measurement and interpretation of the relevant
constructs or ideas.

We have demonstrated the importance of contextual
language modeling for the usability of huffman scan-
ning. An extension of this work would be the investigation
of learning effects on message generation with scanning
paradigms. The order of paradigm presentation or even
the repetitive text stimuli might have affected results. We
report results from novice users of scanning interfaces,
with the exception of our participant who uses AAC.
some of the differences between the calibrated experi-
ment and the fixed rate scanning experiment were likely
due to novice users having high error rates with very
fast scan rates, a skill that should improve with train-
ing. Further, the frequency ordered grid more heav-
ily impacts speed for novices than expert users, since
expert users are familiar with the order of letters on the
grid. The effect of training would determine whether
expertise speeds up huffman and linear scanning as
much as row/column scanning, a research question that
should be explored. These could be addressed easily
through simulations but would not provide the human–
computer interface results that we explored.

Additional investigations are warranted to optimize
performance for users based on their individual prefer-
ences and behaviors. Parameters can be adjusted, and
are customizable in currently available AAC scanning
systems. It is difficult to control for individual variability,
and based on our sample size, we cannot conclude that
huffman scanning is faster than various kinds of row/
column scanning. We asked whether scanning based
on huffman codes – which are guaranteed to yield the
best optimal bits per character – would be found to be
sufficiently useable by individuals as a viable alterna-
tive to available scanning methods. Based on the results
presented here, it is clear that the huffman scanning
was found to be sufficiently useable to capture much
of the gain promised by the optimal huffman codes. In
fact, GB, the participant who uses AAC, typed faster
with huffman scanning than with row/column scan-
ning. Within AAC, there are currently too few options
to speed up text entry for the literate person who relies
on scanning access for message generation. huffman
scanning may provide a potentially useful alternative.

Acknowledgements

We thank GB for taking the time to participate in this
series of scanning experiments.

Notes

The RsVP Keyboard1. ™ is a P300 brain–computer
interface spelling system that is being developed at
Oregon health & science University under an NIh
grant (5R01DC009834) to Dr Fried-Oken, princi-
pal investigator.
The Words2. Freedom 2000TM speech generating
device and EZ KeysTM software were manufactured
and sold by Words, Inc. of Lancaster, CA, UsA.

Huffman and Linear Scanning 13

© 2014 International Society for Augmentative and Alternative Communication

The specs3. TM switch is manufactured and sold by
AbleNet, Inc. of Roseville, MN, UsA.
The Universal switch Mounting system4. TM is man-
ufactured and sold by AbleNet, Inc. of Roseville,
MN, UsA.
The Jelly Bean switch5. TM is manufactured and sold
by AbleNet, Inc. of Roseville, MN, UsA.
Apple IIe computer is the third model Apple II 6.
series of personal computers produced by Apple
Computer of Cupertino, CA, UsA.
Discover: KENX is a keyboard interface designed 7.
to access a computer using a choice of methods
other than a standard keyboard that was manufac-
tured by Don Johnston Inc. of Volo, IL, UsA, and
is a trademark of Madentec Limited, of Edmonton,
Alberta, Canada.
Co:Writer is word prediction software manufac-8.
tured by Don Johnston Inc. of Volo, IL, UsA.

Declaration of interest: The authors report no
conflicts of interest. The authors are responsible for
the content and writing of the paper.

We acknowledge support from NIh/NIDCD grant
1R01DC009834.

References

Alm, N., Arnott, J. L., & Newell, A. F. (1992). Prediction and
conversational momentum in an augmentative communication
system. Communications of the ACM, 35, 46–57.

Anson, D., Moist, P., Przywars, M., Wells, h., saylor, h., & Maxime, h.
(2004). The effects of word completion and word prediction on
typing rates using on-screen keyboards. Assistive Technology, 18,
146–154.

Baletsa, G. s. (1977). Anticipatory communication. (Doctoral
dissertation, Tufts University).

Baletsa, G., Foulds, R., & Crochetiere, W. (1976). Design parameters
of an intelligent communication device. Proceedings of the 29th
Annual Conference on Engineering in Medicine & Biology (p. 371).

Baljko, M., & Tam, A. (2006). Indirect text entry using one or two
keys. Proceedings of the Eighth International ACM Conference on
Assistive Technologies (ASSETS) (pp. 18–25).

Bieker, G., Noethe, G., & Fried-Oken, M. (2011). Locked-in and
reaching new heights. Speak Up, 3–6.

Crochetiere, W., Foulds, R., & sterne, R. (1974). Computer aided
motor communication. Proceedings of the 1974 Conference on
Engineering Devices in Rehabilitation (pp. 1–8).

Darragh, J. J., & Witten, I. h. (1992). The reactive keyboard. Cambridge:
Cambridge University Press.

Darragh, J. J., Witten, I. h., & James, M. L. (1990). The reactive
keyboard: A predictive typing aid. Computer, 23, 41–49.

Delbanco, T., Berwick, D. M., Boufford, J. I., Ollenschläger, G.,
Plamping, D., & Rockefeller, R. G. (2001). healthcare in a
land called PeoplePower: Nothing about me without me. Health
Expectations, 4, 144–150.

Demasco, P. (1994). human factors considerations in the design of
language interfaces in AAC. Assistive Technology, 6, 10–25.

Foulds, R., Baletsa, G., & Crochetiere, W. (1975). The effectiveness
of language redundancy in non-verbal communication.
Proceedings of the Conference on Devices and Systems for the Disabled
(pp. 82–86). Philadelphia, PA.

Gatti, N., Matteucci, M., & sbattella, L. (2004). An adaptive and
predictive environment to support augmentative and alternative
communication. In K. Miesenberger, A. Karshmer, P. Penaz, &

W. Zagler (Eds.), Computers Helping People with Special Needs
(pp. 983–990). Berlin, heidelberg: springer.

hansen, J. P., Johansen, A. s., hansen, D. W., Itoh, K., & Mashino, s.
(2003). Language technology in a predictive, restricted on-screen
keyboard with ambiguous layout for severely disabled people.
Proceedings of EACL Workshop on Language Modeling for Text
Entry Methods. seattle, WA.

heckathorne, C. W., Voda, J. A., & Leibowitz, L. J. (1987). Design
rationale and evaluation of the Portable Anticipatory
Communication Aid – PACA. Augmentative and Alternative
Communication, 3, 170–180.

higginbotham, J., Moulton, B., Lesher, G., & Roark, B. (2012).
The application of natural language processing to augmentative
and alternative communication. Assistive Technology, 24,
14–24.

huffman, D.A. (1952). A method for the construction of minimum
redundancy codes. Proceedings of the IRE, 40, 1098–1101.

huggins, J. E., Guger, C., Allison, B., Anderson, C., Batista, A.,
Brouwer, . . . & Thompson, D. (2014). Workshops of the fifth
international brain-computer interface meeting: defining the
future. Brain-Computer Interfaces, 1, 27–49.

Koester, h., & Levine, s.P. (1994a). Modeling the speed of text
entry with a word prediction interface. IEEE Transactions on
Rehabilitation Engineering, 2, 177–187.

Koester, h., & Levine, s. P. (1994b). Learning and performance of
able-bodied individuals using scanning systems with and without
word prediction. Assistive Technology, 6, 42–54.

Lesher, G. W., Moulton, B. J., & higginbotham, D. J. (1998). Techniques
for augmenting scanning communication. Augmentative and
Alternative Communication, 14, 81–101.

Li, J., & hirst, G. (2005). semantic knowledge in word completion.
Proceedings of the 7th International Conference on Computers &
Accessibility. Baltimore, MD.

MacKenzie, I.s. (2012). Modeling text input for single-switch
scanning. In K. Miesenberger, A. Karshmer, P. Penaz, &
W. Zagler (Eds.), Computers helping people with special needs
(pp. 423–430). Berlin: springer.

MacKenzie, I. s., & Felzer, T. (2010). sAK: scanning ambiguous
keyboard for efficient one-key text entry, ACM Transactions on
Computer-Human Interaction, 17(3), 1–39.

MacKenzie, I. s., & soukoreff, R. W. (2003). Phrase sets for evaluating
text entry techniques. Proceedings of the ACM Conference on Human
Factors in Computing Systems (CHI) (pp. 754–755). ACM: New York.

Oken, B., Orhan, U., Roark, B., Erdogmus, D., Fowler, A., Mooney, A.
. . . & Fried-Oken, M. (2014). Brain-computer interface with
language model-electroencephalography fusion in locked-in
syndrome. Neurorehabilitation and Neural Repair, 28, 387–394.

Orhan, U., hild II, K., Erdogmus, D., Roark, B., Oken, B., &
Fried-Oken, M. (2012). RsVP keyboard™: An EEG based typing
interface. Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP). Kyoto, Japan.

Peters, B., Bieker, G., heckman, s., huggins, J., Wolf, C., Zeitlin, D., &
Fried-Oken, M. (2015). Brain-computer interface users speak up:
The virtual users’ forum at the 2013 international BCI meeting.
Archives of Physical Medicine and Rehabilitation. In press.

Roark, B., Beckley, R., Gibbons, C., & Fried-Oken, M. (2013).
huffman scanning: Using language models within fixed-
grid keyboard emulation. Computer Speech & Language, 27,
1212–1234. http://dx.doi.org/10.1016/j.csl.2012.10.006.

Roark, B., de Villiers, J., Gibbons, C., & Fried-Oken, M. (2010).
scanning methods and language modeling for binary switch
typing. Proceedings of the NAACL-HLT Workshop on Speech and
Language Processing for Assistive Technologies (SLPAT) (pp. 28–36).
Los Angeles, CA.

schadle, I. (2004). sibyl: AAC system using NLP techniques. In
Proceedings of the 9th International Conference on Computers
Helping People with Special needs (ICCHP) (pp. 1109–1015).
Paris, France.

shannon, C.E. (1950). Prediction and entropy of printed English.
Bell System Technical Journal, 30, 50–64.

14 B. Roark et al.

 Augmentative and Alternative Communication

Thiessen, A., Beukelman, D., Ullman, C., & Longenecker, M. (2014).
Measurement of the visual attention patterns of people with aphasia:
A preliminary investigation of two types of human engagement in
photographic images. Augmentative and Alternative Communication,
30, 120–129. doi:10.3109/07434618.2014.905798

Thistle, J. J., & Wilkinson, K. M. (2012). What are the attention
demands of aided AAC? Perspectives on Augmentative and
Alternative Communication, 21, 17–22.

Todman, J., Alm, N., higginbotham, D. J., & File, P. (2008). Whole
utterance approaches in AAC. Augmentative and Alternative
Communication, 24, 235–254.

Trinh, h., Waller, A., Vertanen, K., Kristensson, P. O., & hanson, V. L.
(2012). Applying prediction techniques to phoneme-based AAC
systems. Proceedings of the Third Workshop on Speech and Language
Processing for Assistive Technologies (SLPAT) (pp. 19–27). Montreal,
Canada.

Trnka, K., Yarrington, D., McCoy, K. F., & Pennington, C. (2006).
Topic modeling in fringe word prediction for AAC. Proceedings
of the International Conference on Intelligent User Interfaces
(pp. 276–278). sydney, Australia.

Trnka, K., Yarrington, D., McCaw, J., McCoy, K. F., & Pennington, C.
(2007). The effects of word prediction on communication rate
for AAC. Proceedings of HLT-NAACL; Companion Volume, Short
Papers (pp. 173–176). Rochester, NY.

Trost, h., Matiasek, J., & Baroni, M. (2005). The language component
of the FAsTY text prediction system. Applied Artificial Intelligence,
19, 743–781.

Venkatagiri, h. s. (1999). Efficient keyboard layouts for sequential
access in augmentative and alternative communication.
Augmentative and Alternative Communication, 15, 126–134.

Wandmacher, T., & Antoine, J. Y. (2007). Methods to integrate a
language model with semantic information for a word prediction
component. Proceedings of the Conference on Empirical Methods in
Natural Language Processing (EMNLP) (pp. 506–513). Prague,
Czech Republic.

Wandmacher, T., Antoine, J. Y., Poirier, F., & Departe, J. P. (2008).
sibylle, an assistive communication system adapting to the
context and its user. ACM Transactions on Accessible Computing
(TACCESS), 1, 1–30.

Ward, D. J., Blackwell, A. F., & MacKay, D. J. C. (2002). DAshER
– A data entry interface using continuous gestures & language
models. Human-Computer Interaction, 17, 199–228.

Wilkinson, K. M., hennig, s. C.. (2009). Considerations of cognitive,
attentional, and motivational demands in the construction and
use of aided AAC systems. In G. soto & C. Zangari (Eds.),
Practically speaking: Language, literacy & academic development for
students with AAC needs (pp. 313–334). Baltimore, MD: Paul h.
Brookes Publishing.

