
1

RESEARCH ARTICLE

Huffman and Linear Scanning Methods with Statistical Language Models

BRIAN ROARK1, MELANIE FRIED-OKEN2 & ChRIs GIBBONs3

1Google Research, Portland, Oregon USA, 2Departments of Neurology, Biomedical Engineering, Pediatrics and Otolaryngology, 
Oregon Health & Science University, Portland, Oregon USA and 3AbleNet, Inc., Roseville, Minnesota, USA

Abstract
Current scanning access methods for text generation in AAC devices are limited to relatively few options, most notably row/column 
variations within a matrix. We present huffman scanning, a new method for applying statistical language models to binary-switch, 
static-grid typing AAC interfaces, and compare it to other scanning options under a variety of conditions. We present results for 16 
adults without disabilities and one 36-year-old man with locked-in syndrome who presents with complex communication needs 
and uses AAC scanning devices for writing. huffman scanning with a statistical language model yielded significant typing speedups 
for the 16 participants without disabilities versus any of the other methods tested, including two row/column scanning methods. A 
similar pattern of results was found with the individual with locked-in syndrome. Interestingly, faster typing speeds were obtained 
with huffman scanning using a more leisurely scan rate than relatively fast individually calibrated scan rates. Overall, the results 
reported here demonstrate great promise for the usability of huffman scanning as a faster alternative to row/column scanning.
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Introduction

Predictive language models, commonly designed within 
the field of natural language processing, can assist  
individuals with severe speech and language disabilities 
to communicate more effectively with their text entry 
systems, either by speeding access to an intended mes-
sage or by reducing the effort required to select that 
message. For example, word completion systems use 
predictive language models to identify likely words that 
begin with already entered letters so that they can be 
presented to the user and selected with a single key-
stroke, instead of requiring each remaining letter in the 
word to be individually typed. Whether or not such word 
completion systems result in true speedups in text entry 
depends on many factors, including interface design, 
quality of the predictive model, and the text entry speed 
of the individual. Even so, word completion is a ubiq-
uitous feature of speech-generating devices (sGD) and 
general mobile technologies, and is favorably used by 
many people with and without disabilities.

Words are not the only linguistic units that can be pre-
dicted within an sGD. Utterance-based systems (Alm, 
Arnott, & Newell, 1992; Todman, Alm, higginbotham, 

& File, 2008) attempt to predict whole utterances that 
are contextually appropriate, which can be particularly 
useful for beginnings and ends of conversations, or 
during small talk. For pre-literate sGD users, symbols 
representing concepts (Gatti, Matteucci, & sbattella, 
2004) or sounds (Trinh, Waller, Vertanen, Kristensson, 
& hanson, 2012) can be predicted to allow for com-
munication. Finally, individuals using a single switch 
for keyboard emulation (e.g., through eye blink or other 
switches when direct selection is difficult or impossible) 
can benefit from predictions regarding which stimuli 
to present or highlight for selection. sometimes this is 
achieved via linear scanning, by presenting one symbol 
at a time, perhaps in order of decreasing likelihood, 
and sometimes this is achieved by highlighting sets of 
symbols in a spelling grid according to predictive mod-
els. Recently, a new method, called Huffman scanning, 
was introduced that highlights portions of the grid in an 
optimal way given a predictive model and a huffman  
code (Roark, de Villiers, Gibbons, & Fried-Oken, 2010; 
Roark, Beckley, Gibbons, & Fried-Oken, 2013). huffman 
scanning has been shown to require far fewer keystrokes 
than widely used row/column scanning, and to result 
in faster text entry and strong user preferences relative 
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to row/column scanning. The above cited papers, how-
ever, present results from simulation and participants 
without disabilities, as well as results with relatively 
fast calibrated scan rates, leaving open the question of 
whether the approach would be found to be useable by 
individuals with severe motor impairments who make 
up the target users of such technology. In this paper, 
we present some trials to examine the importance of 
scan rate on overall typing speed for a copy task; and 
we present a case study of the use of this scanning 
technique alongside linear scanning and row/column 
scanning for a user with functional locked-in syndrome. 
We find statistically significant text entry speedups over 
row/column scanning using huffman scanning with a 
contextual language model. These results provide a pre-
liminary indication of the utility of these methods for 
individuals using scanning for keyboard emulation.

Alternative Text Entry

Literate adults who cannot use standard keyboards for 
text entry because of physical impairments have a num-
ber of alternative text entry methods that permit typing, 
known as keyboard emulation. A single binary switch 
is a commonly used interface for alternative text entry, 
and may be realized with a button press at any consis-
tent and reliable anatomical site, eye-blink or even event 
related potentials (ERP) such as the P300 detected 
in EEG signals (Lesher, Moulton, & higginbotham, 
1998). Typing speed is a challenge in such interfaces, 
yet critically important for usability. A common alterna-
tive text entry approach that uses a binary switch is row/
column scanning on a matrix of characters, symbols or 
images (often referred to as a spelling grid). With the 
fixed spelling grid that appears in Figure 1, the user 
selects a target symbol by simply indicating yes when 
the desired row is highlighted, and then indicating yes 
when the desired cell is highlighted in the columns.

Of the ways in which AAC typing interfaces differ, 
perhaps most relevant to the current paper is whether 
the symbol positions are fixed or can move dynamically, 
because dynamic layouts can facilitate integration of 
richer language models. For example, if character prob-
abilities are re-calculated after each typed character, 
then the characters in the grid could be re-arranged so 
that the most likely are placed in the upper left-hand 

corner for row/column scanning. Early research into 
optimizing spelling grids resulted in the Tufts Interactive 
Communicator (TIC) (Crochetiere, Foulds, & sterne, 
1974; Foulds, Baletsa, & Crochetiere, 1975) and the 
Anticipatory TIC (ANTIC) (Baletsa, 1977). In contrast 
to the roughly alphabetic grid shown in Figure 1, the 
TIC organized the letters in frequency order, so that 
frequently accessed symbols occurred in the upper left-
hand corner of the grid, where less scanning is required 
to access them. Most currently manufactured AAC 
devices that present row/column scanning options rely 
on such an optimized letter configuration for fixed spell-
ing grids. In 1987, heckathorne and his research team 
described a device called PACA (Portable Anticipatory 
Communication Aid) that attempted to reorganize the 
grid based on probabilities given the previously typed 
letter, but it was never brought to market (heckathorne, 
Voda, & Leibowitz, 1987). Clearly the cognitive load of 
processing a different grid arrangement after every char-
acter would slow down typing more than the speedup 
due to the improved binary coding (Baletsa, Foulds, & 
Crochetiere, 1976; Lesher et al., 1998). The GazeTalk 
system (hansen, Johansen, hansen, Itoh, & Mashino, 
2003) is an eye gaze system with a dynamically changing 
7.62  10.16 cm grid. In the typical configuration of that 
system, parts of the grid are fixed, but some cells contain 
likely word completions or the most likely single charac-
ter continuations, both based on language model predic-
tions. hansen et al. (2003) report that users produced 
more words per minute with a static keyboard than with 
the predictive grid interface, illustrating the impact of 
the cognitive overhead that goes along the visual scan-
ning required by dynamic grid reorganization.

Interfaces that require extensive visual scanning or 
motor control, or which rely upon complex gestures 
to speed typing, can make the interface difficult if not 
impossible for many people who use AAC. Venkatagiri 
(1999) compared different keyboards and letter pre-
sentations and found time and keystroke requirements 
varied as a function of the layouts and access methods. 
In this paper we will make use of a static grid, or a single 
letter linear scanning interface, yet scan in a way that 
allows for the use of contextual language model prob-
abilities when constructing the binary access code for 
each symbol.

Binary Codes for Typing Interfaces

For any given scanning method, the use of a binary 
switch to select from among a set of options (letter, 
symbols, or images) amounts to the assignment of 
binary codes to each symbol. There are many ways 
to assign a binary code to symbols, such as extended 
AsCII codes, which assign 8 bit codes to symbols, such 
as the letter “m,” which has the AsCII code 01101101. 
scanning methods also amount to assigning such binary 
codes to symbols, different from the AsCII codes above 
in that they typically are of varying length, with some 
symbol codes being very short and others longer. The Figure 1. spelling grid used for standard row/column scanning.
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binary switch for scanning is used to indicate the zeros 
and ones of the code, which results in the symbol being 
typed. For example, the standard row/column scanning 
algorithm works by scanning each row until a selection 
is made, then scanning each column until a selection is 
made, and returning the symbol at the selected row and 
column. For such an access method, the binary code for 
a symbol could be written as a 0 for every row from the 
top that does not contain the target symbol, followed by 
a 1 (for the row that contains it); then a zero for every 
column from the left that does not contain the target 
symbol, followed by a 1 (for the column that contains 
it). Not activating the switch indicates a zero bit; activat-
ing the switch indicates a one bit, and in such a way the 
binary code is input. Using this scanning method with 
the spelling grid in Figure 1, the binary code for the 
letter “j” is 01000001; the letter “m” is 001001. Note 
that this binary code for “m” is 6 bits long, shorter than 
its 8-bit AsCII code.

Ordering the symbols in the grid so that the most 
frequently accessed symbols are in the upper left-hand 
corner of the grid (as in TIC) results in shorter binary 
codes for those frequent symbols, hence less scanning 
required for typical symbol access. The overall frequency 
of letters, however, does not take into account what has 
just been typed, but rather assigns its codes identically 
in all contexts. Whether a particular character is likely or 
not depends to a great extent on the previous character 
and in fact the whole of the message up to that point. 
In this paper we examine alternative fixed-grid scan-
ning methods that do take into account such context in 
the statistical language models used to establish binary 
codes for keyboard emulation.

Language Modeling for Typing Interfaces

statistical language models are common components 
of AAC systems. Most commonly, language models are 
used for word completion or word prediction, as men-
tioned earlier for the GazeTalk system. There has been 
extensive research on methods for integrating word 
completion or prediction models into AAC systems in 
such a way that they achieve keystroke reductions (Dar-
ragh, Witten, & James, 1990; Li & hirst, 2005; Trost, 
Matiasek, & Baroni, 2005; Trnka, Yarrington, McCoy, & 
Pennington, 2006; Trnka, Yarrington, McCaw, McCoy, 
& Pennington, 2007; Wandmacher & Antoine, 2007). 
These keystroke reductions are achieved when a single 
keystroke suffices to select the rest of a word, rather than 
requiring keystrokes to select each of the remaining char-
acters of the word. Monitoring a separate region of the 
interface that contains suggested completions involves 
some additional cognitive load (much as with dynamic 
grid reorganization), hence in some instances the actual 
realized typing speedup can be far less than the key-
stroke savings might lead one to expect (Anson et al., 
2004), and in many cases a net slowdown in text entry 
can occur (Koester & Levine, 1994a; 1994b). Even so, 
there is some evidence that, under certain conditions, 

word completion and prediction speed typing (Trnka 
et al., 2007), and AAC keyboard emulation software 
commonly include such components.

Word completion is one way to use language model-
ing to speed text entry, though word completion is a 
method to augment an existing text entry system, rather 
than a stand-alone system. A fully functional text entry 
system must be open vocabulary in the same way as 
standard text entry modalities, such as the QWERTY 
keyboard: any word that the user wants to type should 
be able to be produced by the keyboard emulation. 
Word completion and prediction systems make those 
predictions over a vocabulary of possible words, and if 
the target words fall outside of that vocabulary (i.e., the 
word is out-of-vocabulary) then it will not show up as a 
word completion/prediction option, leaving the user to 
type the entire target. This is particularly important for 
typing items that fall outside of typical lexicons, such as 
proper names, acronyms, abbreviations, or any depar-
tures from standard orthography, such as informal text 
genre found in social media. The language model in the 
text entry system must be able to repair spelling and 
word errors by including some editing symbols such as 
a delete key. In other words, it is important to design 
language models to speed up a core open-vocabulary 
typing function by predicting single AsCII and control 
characters, rather than just multiple character strings. 
The predictive model must assign a probability over 
the set of possible next symbols, given what has already 
been typed. This task is actually very similar to the influ-
ential shannon game (shannon, 1950), where a given 
text was guessed one character at a time by people as 
the means for establishing the statistical characteristics 
of the language.

Beyond word completion, language models have 
been used to make letter selection easier. For example, 
Dasher (Ward, Blackwell, & MacKay, 2002) uses lan-
guage models to make the interface region allocated to a 
character larger, thus facilitating hitting the target letter 
with a gesture. These gestures involve moving eye gaze 
or a mouse cursor over the physical region allocated to 
the symbol. As symbols are typed, newly predicted sym-
bols gain probability and their regions grow dynamically 
across the interface in a way that makes it appear that 
the point of focus is moving from left-to-right through 
the set of possible messages. In order to type efficiently 
with the interface, Dasher requires sufficient motor 
control and visual attention to continuously move the 
cursor. For expert users, it can be very effective, but it 
can be very challenging for individuals with motor and/
or cognitive impairments to use.

Most current AAC devices include both letter and 
word prediction options. Within the NLP research 
literature, the sibyl/sibylle interface (schadle, 2004; 
Wandmacher, Antoine, Poirier, & Departe, 2008), simi-
lar to our brain–computer interface for spelling, known 
as RsVP Keyboard™ 1 (Oken et al., 2014; Orhan et al., 
2012), involves a letter prediction component with a 
linear scan of the letters in probability order (based on 
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a 5-gram character language model) instead of row/
column scanning. User feedback indicated that row/
column scanning was more tiring than a linear scan in 
their system (Wandmacher et al., 2008).

In prior work (Roark et al., 2010; Roark et al., 2013), 
we demonstrated that huffman scanning requires far 
fewer keystrokes than widely used row/column scanning, 
and results in faster text entry and strong user prefer-
ences relative to row/column scanning. however, our 
previous results were derived from either user simula-
tions or study participants without disabilities, and were 
achieved with relatively fast calibrated scan rates. It is 
not yet known whether huffman scanning is viable or 
preferred by individuals with severe motor impairments 
who are the target users of such technology. Obtaining 
results from people who rely on the assistive technol-
ogy is critical if we are to understand what systems are 
viable, important and preferred. If we do not obtain 
patient-centered outcomes or conduct trials for practi-
cal use, then development efforts may become obsolete 
quickly, and our goals may not meet the needs of the 
very individuals we are addressing. As each assistive 
technology research paradigm must include trials with 
users, in this paper we present results from users with 
and without disabilities.

We will describe three experiments that attempt 
to determine how to leverage contextually sensitive 
language models in fixed-grid scanning beyond word 
completion and prediction; and to quantify the degree 
to which language models can make the diverse scan-
ning interfaces competitive in terms of typing speed. 
Before doing so, however, we will first explicitly review 
our terminology, hopefully to avoid any confusion when 
describing methods and results.

Terminology

This paper is presenting work at the intersection of 
several disciplines: AAC, computational linguistics, and 
human-computer interaction. As a result, what may 
seem to be the most natural term for a concept will vary 
across readers. Further complicating this is the occa-
sional lack of field-internal consensus on the appropri-
ate term. To aid interdisciplinary understanding, and 
avoid misinterpretation of our methods or results, we 
present terminology and how it relates to prior usage.

Symbols, Words and Strings. We use the terms symbol and 
character interchangeably to describe the smallest items 
being typed. Typically these are letters, but can include 
editing or formatting symbols such as backspace, delete 
or whitespace. A word is a whitespace delimited string 
of symbols. An n-gram is a string of symbols of length n 
(e.g., “abcd” is a 4-gram of letters).

Bits, Switches, Scan Steps. In direct selection systems, 
the symbol is the smallest unit that can be selected,  
and typing performance is often measured in terms of 
keystrokes (i.e., the number of select gestures required 

to enter the message). In scanning systems, multiple 
user actions are generally required to type a single 
symbol, and these actions can be referred to in vari-
ous ways. Lesher et al. (1998) refer to base actions as 
switches, and these include switch activations (also called 
keypress or switch hit) or timeout (absence of switch 
hit). Recently, Mackenzie (2012) referred to switches 
in the Lesher et al. (1998) sense as scan steps, and advo-
cated scan steps per character as a measure of scanning 
efficiency. Taking the perspective of binary codes as we 
have done in this paper, each of these switches or scan 
steps corresponds to a bit, hence bits-per-character is an 
equivalent measure to switches-per-character or scan-
steps per-character. Given the focus on binary coding in 
this approach, we will discuss bits-per-character when 
presenting results.

Optimal Bits per Character, Errors and Long Codes. The 
ideal users would activate the switch always and only 
when required to type their target character. At each 
position in a test sequence, we can calculate the num-
ber of bits required to type the character if there are 
no errors. We report this as optimal bits per character, 
and this is the sort of measure reported in scanning 
simulations, such as those by Lesher et al. (1998) and 
MacKenzie (2012). Real users, however, make errors, 
and these errors can either result in the wrong symbol 
being typed, or in scanning past the target symbol but 
correctly typing it when the system reaches it again. We 
term this error as a long code, since the binary code that 
is used to select the symbol is longer than the optimal 
code for that symbol. A long code can result from either 
a timing error (failure to activate switch) or selection 
error (erroneous switch activation). For example, in 
row/column scanning, the target row may be missed or 
the wrong row selected, but this does not necessarily 
result in the wrong symbol being typed. We report both 
error rate (percentage of typed symbols that were incor-
rect) and long code rate (percentage of correctly typed 
symbols that had a longer than optimal code).

Scan rate, Dwell time, Auto scan, Step scan. We designed 
our scanning interfaces so that one of the user actions is 
to refrain from activating the switch and allow a timeout 
to trigger. Dwell time refers to the duration of the time 
interval during which the system waits for switch activa-
tion. A short dwell time produces a faster rate of scan-
ning, since the user has less to activate the switch before 
the system records a timeout and moves on. In auto 
scanning, a timeout indicates that no selection has been 
made; in step scanning, a timeout indicates selection.

Methods

Participants

Participants were 16 literate adults without disabilities 
and one man with severe speech and physical impair-
ments secondary to brainstem stroke. The participants 
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without disabilities were students and faculty at the Ore-
gon health & science University with reportedly intact 
cognitive, motor, sensory and language skills. They were 
not familiar with our keyboard emulation interface prior 
to participation in the study. GB, the participant with 
locked-in syndrome, is a 36-year-old male, who had a 
brainstem stroke at the age of 20 and has been function-
ally locked-in ever since. he retains some slight head 
movement and has adequate visual scanning. he uses 
the Words Freedom 2000TM 2 speech generating device 
with EZ Keys softwareTM in row/column scanning mode 
and a specsTM 3 switch placed on the AbleNet Univer-
sal Arm Mounting systemTM 4 by his right temple for 
some of his email communication. For the majority of 
his expressive language, however, Greg depends on co-
construction with a partner-dependent alphabet audi-
tory scan and a familiar communication partner.

GB became quadriplegic after he completed Us mili-
tary service. At the time, he was enrolled in community 
college and worked as a landscaper. he currently lives 
with his mother and sister, and relies on the assistance 
of three paid caregivers during daytime hours for all 
activities. GB has been an active member of the RsVP 
KeyboardTM research team since 2006. he attends 
monthly team meetings at Oregon health & science 
University, where he provides input and suggestions for 
all research and development issues that arise. he has 
published his thoughts about BCI for AAC in Speak 
Up, the publication of the United states society for 
Augmentative and Alternative Communication (Bieker, 
Noethe, & Fried-Oken, 2011). GB attended the 2013 
International Brain-Computer Interface (BCI) Meeting 
in Monterey, CA where he presented a workshop on 
AAC for BCI (huggins et al., 2015) and participated in 
the BCI Users’ Forum in front of 350 conference par-
ticipants (Peters et al., 2014). Of note, all presentations 
were prepared using partner-assisted auditory scanning. 
he finds technology to be too slow, fatiguing, and miss-
ing the engagement and personal attention that defines 
verbal communication and interaction for him.

GB was first introduced to AAC for writing with the 
Apple IIe computer6, Discover: KENX interface7, and 
Co:Writer software8 by Don Johnston, Inc. Over time, 
he switched to a Words Freedom 2000TM 2 system, 
with which he uses stored phrases and generates new 
messages with one switch row/column scanning. he 
is constantly looking for alternatives. he completed a 
number of trials with eye gaze systems. he found that 
the eye gaze devices created a physical barrier between 
him and his communication partners and he prefers to 
look at the people he is interacting with. GB relies on 
assistive technology for short written text only. Due to 
his dependence on others for system set up and main-
tenance, and the time demands to start using AAC, he 
reports that he does not like to use AAC for spontaneous 
conversation. he states that there is a place for AAC, 
but he prefers to use partner-assisted auditory scans for 
speaking with others or preparing long text. Even though 
he has a portable laptop and wheelchair mount, he finds 

the AAC system intrusive and difficult to take with him. 
Placement of the switch and switch mount is a constant 
barrier to device use, and it must be readjusted multiple 
times during each use. he enjoys the participation of his 
caregivers and verbal engagement during the message 
formulation process, and finds that it is much quicker 
to ask his familiar caregiver to predict word and phrase 
completions then to rely on the AAC system. GB uses 
his row/column scanning device for short emails only. 
Message production rates are slow; he is about 60% 
accurate with initial scanning selections and must delete 
or retype letters often. By nature, he reports that he is 
not a big talker and relies on short messages rather than 
long stories. he enjoys humor and sports, often con-
necting with others in short emails about teams or jokes. 
he is constantly looking for a better switch option, and 
is currently investigating a laser switch. GB is a BCI 
evaluator, and tests all system upgrades and treatment 
protocols that are developed for our new assistive tech-
nology. since the technology is not yet reliable for home 
use without significant technical support, he does not 
rely on BCI for composing personal text. GB is very 
aware of the speed challenges associated with any AAC 
device. he states that he often fatigues when using AAC 
technology, and the attention demands for accuracy are 
high. At this time he is willing to trade the independence 
of AAC technology for a faster, more personal system 
that involves one-on-one interaction and constant 
engagement with a communication partner.

Materials

Corpora and Character-based Language Modeling. Char-
acter n-gram models were used for this experiment. We 
follow Roark et al. (2013) in using Witten-Bell smoothed 
n-gram language models, and refer the reader to that 
paper for more extensive presentation of these methods. 
Briefly, each character’s probability is conditioned on 
the previous seven characters, and the probabilities are 
regularized using widely known methods so that even 
unobserved sequences receive some probability. Models 
are trained on newswire text from the New York Times 
portion of the English Gigaword corpus (LDC2007T07) 
and individual words taken from the CMU Pronouncing 
Dictionary (www.speech.cs.cmu.edu/cgi-bin/cmudict), 
which were appended to the newswire corpus to give 
better word coverage. The resulting corpus was prepro-
cessed for the current evaluation, as detailed in Roark 
et al. (2010) and Roark et al. (2013). The pre-processing 
was carried out so as to yield text that was actually typed 
– as opposed to, say, pasted signatures, bylines, tabular 
data, automatically generated text, etc. – hence of some 
utility for modeling the kind of language that would be 
produced in English typing applications. Further, the 
pre-processing reduced text duplication in the corpus.

Binary Codes. The language models described above 
give us the means to assign a probability to each sym-
bol in the symbol set, given what has been typed up to 
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that point. The symbol set is then sorted in decreasing 
probability order and a binary coding tree is built over 
the symbol set, so that the binary code assigned to each 
symbol differs depending on the context, i.e., what has 
been typed up to that point. huffman and linear scan-
ning approaches make use of these binary coding trees, 
and we refer the reader to Roark et al. (2013) for techni-
cal details on this approach.

Stimuli

All participants were presented with the text entry 
phrase set from MacKenzie and soukoreff (2003) to 
evaluate typing performance. Of the 500 phrases in 
that set, 20 were randomly set aside for testing, and 
the other 480 were available as stimuli during training 
and calibration phases. Of the 20 evaluation strings, five 
were used in this study: I can see the rings on saturn, 
Watch out for low flying objects, Neither a borrower nor 
a lender be, An offer you cannot refuse, and The facts 
get in the way.

Scanning Paradigms. The interface developed for this 
study presented phrase copy tasks to measure typing per-
formance under six scanning paradigms. The scanning 
paradigms were: (1–2) row/column scanning, both auto 
scan (switch activation for character selection) and step 
scan (absence of switch activation for character selec-
tion); (3–4) huffman scanning using either a unigram 
language model (no context) or an 8-gram language 
model to derive the huffman codes; and (5–6) scan-
ning with a linear scanning code, either on the six-by-six 
grid like the other scanning approaches, or using RsVP 
(Rapid serial Visual Presentation) paradigm, where only 
one symbol at a time is flashed on the screen. For each 
paradigm, participants saw a target phrase with instruc-
tions to type the phrase exactly as displayed. Any incor-
rect symbols were deleted by selecting the backspace 
symbol followed by selection of the correct symbol.

The same optimized letter matrix is used in all grid 
scanning conditions, based on letter frequency.

Row/column Scanning. The typing interface for row/ 
Column scanning is shown in Figure 2(a). The target 
string to be copied is presented to the participant at the 
top of the window, and immediately below this is the 
buffer showing what has already been typed. Whitespace 
between words (represented here by the underscore 
character, shown in the grid’s upper left-hand corner) 
also must be typed correctly by the participant. When 
an incorrect character is selected, the error is shown in 
red with a backspace symbol immediately following – as 
shown in Figure 2(b) – to assist users in recognizing that 
an error has been made and must be corrected.

For row/column scanning, the cursor returns to the 
top row after passing the bottom row without a selection. 
Once a row has been selected, the cursor wraps around 
the letters three times. If no cell is selected, then scanning 
continues from the following row. This provides a recov-
ery mechanism if an error in row selection is made.

Huffman Scanning. When configured for huffman scan-
ning (Roark et al., 2010; Roark et al., 2013), the grid 
remains the same but the highlighting differs, as shown 
in Figure 3. In this mode, a huffman code divides the 
symbols into two sets (0 and 1). highlighting of a cell 
indicates that the symbol is in set 1. Because the divi-
sion into two sets occurs in order to reduce the number 
of selections required to reach the desired symbol, the 
highlighted cells cannot generally be contiguous. It is 
the relaxation of requiring highlighting to be contiguous 
that allows the use of the language model to determine 
the code. Non-contiguous highlighting in scanning is 
rare, but has been discussed (Demasco, 1994). As far as 
we know, however, this is the first time non-contiguous 
highlighting has been used for dynamic, contextually-
sensitive coding. huffman coding has been applied pre-
viously to a scanning paradigm (Baljko & Tam, 2006), 
though with a unigram model (i.e., no context) in a way 
that ensured contiguity of highlighted regions.

To understand how huffman scanning works, we 
provide the following example, which calculates the 
probability of letter selection from all possible letters 

Figure 2. The typing interface presented to participants with and without disabilities (a) for row/column scanning and (b) after an error was entered 
during the copy task.
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(huffman, 1952). suppose the partial phrase “his name 
is Tom Rob” has been typed, and we are using huffman 
scanning to type the next letter. The current intended 
name might continue with an i (e.g., Robinson), an e 
(Roberts), a b (Robbins), and so on. Or perhaps the pre-
viously typed b was an error, hence the current target is 
the delete symbol. For the sake of illustration, suppose 
that the probabilities for the most likely symbols are 
as follows: prob(i)  0.3; prob(e)  0.3; prob(b)  0.2; 
and prob(delete)  0.1. The rest of the letters share the 
remaining 0.1 of probability, summing properly to 1.

The symbols are divided into two sets, so that each 
set has as close to half of the probability mass as is 
possible. (Recall that a set’s probability is the sum of 
the probabilities of its members.) Note that, given the 
probabilities above, the letters i and e cannot end up in 
the same set, since together they have total probability 
0.6, which would lead to the other set having probabil-
ity 0.4, less than the optimal 0.5. If, instead, we put i 
and b in one set, and everything else in the other set, 
both sets will have the desired probability of 0.5. The 
smaller set (i and b) is then highlighted and the system 
observes whether there is switch activation or not within 
the specified dwell time. Note that the letter e, which 
is tied for the highest probability, is not highlighted. 
highlighting of a cell in the grid does not indicate that 
a cell is particularly likely or not; rather it simply indi-
cates whether, after dividing the symbols up, it is in the 
highlighted set.

In this novel huffman scanning approach, the high-
lighted set of symbols is selected by switch activation. 
If a selected set is just a single character, that charac-
ter is typed. If there is more than one symbol in the 
selected set, then the binary code is recalculated for 
the next presentation of highlighting. This is done in 
such a way that, until a symbol is typed, no symbol is 
ruled out. If the switch is activated, so that the high-
lighted set (i and b) is selected, there is some small 
probability (0.1) that the selection was unintended 
(i.e., the target symbol is in the other set). Based on 
this, we recalculate all the symbol probabilities, and 

the new probability of letter i works out to be just over 
0.5, so it will be placed in its own set for the next step 
of the scanning. scanning continues like this until a 
single character is selected. After every scan step, the 
huffman or linear scanning codes are recalculated, 
taking into account the probability of an error, in such 
a way that non-selected letters retain some probability 
of being selected in the system. In other words, even 
if the wrong character is selected, thus reducing the 
probability of the target symbol, subsequent correct 
selections will gradually increase the probability of the 
target symbol, eventually leading to it being typed. The 
recovery procedure with huffman scanning does not 
resemble the recovery loop used for row column scan-
ning. We refer the reader to Roark et al. (2010) and 
Roark et al. (2013) for further technical discussions on 
how these codes are recalculated taking into account 
an error rate parameter.

Linear Scanning. By highlighting a single cell at a time, 
in descending probability order, linear scanning occurs 
on the grids shown in Figures 2 and 3. Alternatively, 
linear scanning occurs with an RsVP interface, shown 
in Figure 4, which presents single characters serially.

Procedure

There are three stages to the experimental paradigm: 
training a participant to understand the different 
scanning tasks, calibrating the scanning rate for each 
task, and completing the experimental scanning tasks. 
Participants completed phrase copy tasks with the 
aforementioned six different scanning paradigms. Par-
ticipants without disabilities engaged in all six scanning 
paradigms; GB participated in four of these condi-
tions. Participants were seated at a table in front of a 
laptop that presented our keyboard emulation software.  
The participants without disabilities selected targeted 
symbols by using their dominant hand to hit a Jelly 
Bean switch™ 5 on the tabletop; GB used his chin to 
depress a specs switch attached to the Universal switch 
Mounting system on his wheelchair.

Figure 3. The typing interface presented to participants with and 
without disabilities during the huffman scanning paradigm.

Figure 4. The typing interface presented to participants with and 
without disabilities during the RsVP paradigm.
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Training. Participants were presented with a short dem-
onstration of the interface by an author, which involved 
typing a short string (“a dog”) using row/column auto 
scan, row/column step scan, and huffman scanning. 
The demonstration included target selection, typing the 
wrong symbol, deleting a symbol, typing a space, and 
scanning past the target symbol. Following this simple 
demonstration, the participants were presented graphi-
cally with overall instructions for the task. A self-paced 
instruction module explained details about the task to be 
completed. For each of the typing conditions, condition-
specific instructions were presented. These instructions 
explained how keyboard emulation functions for each con-
dition and reiterated important overall task instructions. 
The scan rate for each condition, specifying how long to 
wait for a button press before advancing, was set for each 
individual during the training/calibration session.

Individual Scan Rate Calibrations. Each participant’s scan 
rate must be calibrated before the experimental task is 
presented. We will briefly review the calibration proce-
dure here and refer the reader to Roark et al. (2013) for 
full details. Because the huffman and linear scanning 
approaches require the individual to react to what is 
presented on the screen, the scan rate is constrained by 
reaction time. In contrast, row/column scanning allows 
for anticipation and planning, since the current configu-
ration of the highlighting determines the subsequent 
configuration of the highlighting. One might expect, 
then, that faster scan rates would be more suited to row/
scanning than compared to the other approaches being 
investigated. Auto scan and step scan, however, are 
substantially different in terms of the control required 
to advance scanning versus selection, hence, one might 
expect these scan rates to also differ. Calibration was 
thus conducted for three scenarios: row/column step 
scan, row/column auto scan, and huffman scanning 
with a unigram language model. This latter rate was 
then used for all non-row/column scanning conditions, 
all of which are constrained by reaction time.

Calibration is run in two phases. The first phase 
begins with a relatively slow scan rate and speeds up by 
200 ms after each correctly typed target string until it 
reaches a scan rate at which the participant is unable to 
successfully type the target. The second phase for each 
condition (held after a period during which other meth-
ods are used) begins with a scan rate 500 ms slower 
than the fastest scan rate at which the participant failed 
in the prior phase, then speeds up by 100 ms after each 
successful target. After reaching a scan rate that is too 
fast for the participant to successfully type the target, 
the scan rate decreases by 50 ms until the subject can 
successfully type the target, and this final scan rate is 
taken as the final calibrated rate for that individual.

Experimental Testing. Participants typed the same five 
phrases from the test set in six distinct conditions, the 
ordering of which was randomized for each participant. 
There were two row/column scanning conditions, auto 

and step scan; two huffman scanning conditions, with 
codes derived from either the unigram language model 
or the 8-gram language model; and two linear scanning 
conditions, either scanning on the 6-by-6 spelling grid 
or RsVP single letter presentation. Both linear scanning 
conditions used codes derived from the 8-gram language 
model. Identical instructions to those given during the 
calibration phase were provided in each condition, and 
a practice phase preceded the typing of phrases from the 
test set. Once the participant met the error rate criterion 
performance (10% error rate or lower) for that condi-
tion, he or she advanced from practice phase and was 
given the test phrases to type.

Results

Experiment 1: Calibrated Scanning by Participants 
Without Disabilities

The 16 native English speakers without disabilities 
calibrated the scan rate for each scanning paradigm at 
the start of the experimental session, and the results 
are presented in Table I. The raw results presented for 
this experiment are also reported in Roark et al. (2013), 
though we provide a statistical analysis of the results and 
subsequent discussion here for the first time.

This is a copy task where participants are instructed 
to correct all errors and copy the presented test string 
exactly. To avoid scenarios where the participant was 
unable to correct all errors and successfully complete 
typing a particular stimulus (due, perhaps, to the par-
ticipant not recognizing that an error has been made 
or being unable to recover from a rapid sequence of 
many errors), a trial was interrupted if the total num-
ber of errors on the stimulus reaches a threshold. After 
interruption, the participant was prompted to type the 
same target phrase again, starting from the beginning. 
The total time and number of keystrokes both before 
and after interruption were counted when calculating 
performance. For the current experiment, the threshold 
was set to 20 errors, and just two participants reached 
this threshold, for one phrase each in a row/column 
scanning condition (see Table II).

Table II (first presented in Roark et al., 2013) reports 
typing speed and related measures (means and stan-
dard deviations) for the participants. Typing speed is 
presented as characters per minute, and the number of 
keypress or non-keypress (timeout) events used to type 
the characters is presented as bits per character. (see 
the earlier Terminology section for a detailed discussion 

Table I. Calibrated scan Rates.

Scan rate (ms)
Scanning condition M (SD)

Row/column step scan 419 (95)
Row/column auto scan 328 (77)
Huffman and linear scan 500 (89)
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of these terms.) Bits per character does not correlate 
perfectly with typing speed, since a timeout by defini-
tion consumes the fully allotted trial time, and a key 
press is typically much shorter. We also present rates of 
two kinds of errors. Note that, to successfully complete 
the trial, the stimulus must be typed correctly. One kind 
of error involves typing the wrong symbol, then deleting 
and retyping the correct symbol. We present this sort of 
mistake as error rate – the number of incorrect symbols 
typed divided by the total symbols typed. Another kind 
of mistake in typing a symbol is to scan past the symbol 
without typing it, but eventually return to that symbol 
and type it correctly. This mistake results in extra key-
strokes, which means that the binary code used to select 
the character was longer than what it would have been 
optimally. We present this sort of mistake as the long 
code rate – the percentage of correctly typed symbols 
that required a longer than optimal code. To see how 
a perfect user would have performed, we present the 
optimal bits per character that could be achieved with 
each method.

We used a paired-sample t-test to compare the typ-
ing speed of the subjects across the six conditions, with 
Bonferroni correction based on 15 comparisons. The 
huffman unigram condition was significantly slower, 
p  0.001, than each of the other conditions, approxi-
mately twice as slow as huffman 8-gram. Both the 
huffman 8-gram, p  0.01, and Linear grid 8-gram, p 
 0.05, conditions were significantly faster than row/
column auto scan. The huffman 8-gram condition was 
also significantly faster than the RsVP 8-gram condi-
tion, p  0.05. None of the other differences were statis-
tically significant.

Table III (originally from Roark et al., 2013) presents 
mean scores for four questions: I was fatigued by the end 
of the trial. I was stressed by the end of the trial. I liked 

this trial. I was frustrated by this trial. The responses 
showed a consistent preference for huffman and linear 
grid conditions with an 8-gram language model over the 
other conditions (see results in Table III).

Experiment 2: Fixed Rate Scanning by Participants 
without Disabilities

having a calibration session, and setting scan rates at 
the fastest scan rate at which participants can perform 
the task within stipulated error rate bounds, ensures 
that methods that allow for anticipation, such as row/
column scanning, get some advantage in terms of char-
acters per minute that might be produced. however, 
the fastest scan rate at which the task can be accom-
plished is not the same as the scan rate that results in 
the most characters per minute. In fact, the relatively 
high error rates and long code rates that were observed 
in some of these conditions may lead one to believe 
that these scan rates were not optimal in this respect 
and that a more leisurely scan rate which resulted in 
fewer errors and missed targets may in fact yield faster 
typing. From these considerations, we ran a follow-up 
experiment using a fixed scan rate of 600 ms across 
all of the conditions. Note that there are many ways 
in which a scan rate can be chosen for a particular 
individual, through the use of more complex calibra-
tion methods or with the help of a speech-language 
pathologist. Rather than individualizing, we chose a 
rate that was comfortable across all participants and 
conditions, but fast enough to avoid frustration. The 
same participants were used for this experiment as for 
Experiment 1, and the testing protocol was identical 
to that experiment. Participants had at least one day 
between Experiment 1 and Experiment 2. Results are 
presented in Table IV.

Table II. Typing Results for 16 Users on Five Test strings (Total 31 Words, 145 Characters), Under six 
Conditions, with Calibrated scan Rates.

Speed (cpm)
M (SD)

Bits per character
Error rate

M (SD)
Long code rate

M (SD)Scanning condition M (SD) opt

Row/column step scan 21.2 (3.8) 8.4 (2.5) 4.5 6.2 (4.4) 30.4 (17.9)
Row/column auto scan 19.6 (3.2) 8.0 (1.7) 4.5 4.6 (3.0) 28.9 (13.3)
Huffman unigram 12.8 (2.3) 7.9 (1.7) 4.4 4.4 (2.3) 35.1 (13.0)
Huffman 8-gram 24.5 (3.9) 4.0 (0.9) 2.6 4.2 (2.2) 15.4 (12.5)
Linear grid 8-gram 23.2 (2.4) 4.1 (0.6) 3.4 2.4 (1.7) 4.3 (3.4)
RSVP 8-gram 20.9 (4.4) 5.5 (2.2) 3.4 7.1 (4.8) 4.2 (3.7)

Table III. Mean Likert scores to Experiment 1 survey Questions (5  strongly Agree; 1  strongly 
Disagree).

Row/Column Huffman Linear

Question step auto 1-grm 8-grm grid RSVP

I was fatigued by the end of the trial 3.1 1.9 3.3 1.9 1.9 2.8
I was stressed by the end of the trial 2.4 2.0 2.5 1.7 1.6 2.6
I liked this trial 2.1 3.5 2.6 3.9 3.8 2.9
I was frustrated by this trial 3.4 1.8 3.1 1.7 1.7 2.9
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In only two of the conditions (auto row/column scan-
ning and linear grid scanning) were the typing speeds 
in characters per minute slower than in the calibrated 
condition, and neither slowdown reached statistical 
significance. In most conditions, the reduction in error 
and long code rates offset the slowdown in scan rate, 
resulting in significantly faster typing for both huffman 
scanning conditions and the RsVP 8-gram condition. 
Within this experiment, we again find that the huffman 
unigram condition was significantly slower than each 
of the other conditions, p  0.001, again using paired-
sample t-test with Bonferroni correction based on 15 
comparisons. The nearly factor of two slowdown in this 
condition relative to the other huffman scanning con-
dition was also preserved. We also find that the huff-
man 8-gram condition is significantly faster than every 
other condition, p  0.001. Finally, the row/column step 
scan, linear grid 8-gram and RsVP 8-gram conditions 
were all significantly faster than row/column auto scan, 
p  0.001. None of the other differences were statisti-
cally significant.

Experiment 3: Scanning by Participant with Severe Speech 
and Physical Impairments

After examining performance using these new scanning 
methods for participants without disabilities, we turned 
to performance of a man who uses AAC. GB partici-
pated in four of the original six conditions. step scan-
ning was omitted because it requires a greater number 
of key presses than auto scanning methods, and was too 
difficult for GB. Based on the prior results, we see that 
the huffman unigram method is much more difficult 
for the users, hence this was also omitted. The remain-
ing four conditions were preserved: auto scan row/ 
column, huffman scanning with an 8-gram model, lin-
ear scanning on a grid, and linear scanning with RsVP.

Rather than using an automatic scan rate calibration 
method, we provided the user with a training session, 
in which a participating speech-language pathologist 
established the correct position of the switch and manu-
ally calibrated the scan rate of various conditions to be 
comfortable for the user. A scan rate of 1 s was estab-
lished for the row/column scanning condition and 1.5 s 
for the other conditions.

Table V presents GB’s typing speed and other statis-
tics for the four conditions, with the same test stimuli as 
the previously presented results. To no surprise, typing 
speed was slower for all conditions when using GB’s 1 s 
versus 600 ms scan rates in the prior experiment. Error 
rates and long code rates were also increased, except for 
the linear grid 8-gram rate where GB’s rate matched the 
rate of the other participants. For GB, huffman 8-gram 
yielded a 60% speedup over row/column auto scanning, 
more than the 50% speedup observed in Experiment 
2. Table VI presents GB’s responses to the user survey, 
showing a preference for the row/column scanning and 
huffman scanning versus the linear scanning conditions, 
presumably due to frustration with positions requiring a 
long linear scan through many options. In addition, the 
RsVP condition was the one judged to be fatiguing and 
stressful. GB, as disability consultant to our RsVP BCI 
project, also provides regular feedback on the focused 
attention that is needed for the RsVP Keyboard, com-
menting often that it would be difficult to use this para-
digm for message generation (see Table VI).

Discussion

The experimental examination of language-model 
effects within static scanning grids is a timely endeavor, 
as AAC is becoming more available through sGDs and 
mobile technologies to literate individuals with severe 

Table IV. Typing Results for 16 Users on Five Test strings (Total 31 Words, 145 Characters), Under six 
Conditions, with Fixed 600-ms scan Rate.

Speed (cpm)
M (SD)

Bits per character
Error rate

M (SD)
Long code rate

M (SD)Scanning condition M (SD) opt.

Row/column step scan 22.3 (2.3) 6.2 (0.9) 4.5 2.2 (1.6) 17.5 (9.1)
Row/column auto scan 18.1 (2.2) 5.6 (0.7) 4.5 3.3 (2.7) 10.2 (5.8)
Huffman unigram 14.8 (2.0) 6.0 (0.8) 4.4 2.6 (2.1) 18.2 (7.0)
Huffman 8-gram 27.3 (3.4) 3.1 (0.4) 2.6 2.1 (2.3) 5.8 (4.6)
Linear grid 8-gram 22.6 (1.1) 3.7 (0.2) 3.4 2.0 (1.6) 0.8 (0.9)
RSVP 8-gram 23.7 (2.3) 3.9 (0.5) 3.4 2.8 (2.4) 1.0 (1.0)

Table V. Typing results for One AAC User on Five Test strings (Total 31Words, 145 Characters), Under Four 
Conditions, with Fixed scan Rates (1 s for Row/Column scanning; 1.5 s Others).

Bits per character

Scanning condition Speed (cpm) Subject Opt. Error rate Long code rate

Row/column auto scan 6.0 8.5 4.5 4.4 32.2
Huffman 8-gram 9.7 3.8 2.6 3.8 14.6
Linear grid 8-gram 9.5 3.9 3.4 2.0 5.4
RSVP 8-gram 7.5 5.2 3.4 5.5 5.2
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speech and physical impairments. Adults with acquired 
impairments are coming to the task of single-switch 
spelling with expertise in letter prediction and word 
prediction gained from using smart phones and word 
processors. They are asking sophisticated questions 
about how to increase typing speed for spontaneous 
conversation, given their past experiences with mobile 
technology and computer access. The field of AAC has 
not kept pace with the rapid computational language 
and machine learning advances that are occurring for 
general technology. With renewed interest from both 
computational linguists and AAC experts in language 
enhancement for functional communication, we must 
begin to analyze binary switch scanning performance 
with language, cognitive, sensory/motor and environ-
mental variables. The field of natural language pro-
cessing can offer new avenues of research for the AAC 
field to make assistive technology for communication 
more effective and efficient (Darragh & Witten, 1992; 
higginbotham, Moulton, Lesher, & Roark, 2012). The 
introduction of huffman coding as a plausible scanning 
technique is one such endeavor.

Despite the small study size (17 study participants, 
including just one literate adult who used AAC), sev-
eral key results are apparent. First, huffman scanning 
requires a strong language model to be a viable alterna-
tive to row/column scanning. When just using a unigram 
model, huffman scanning was significantly slower than 
either of the row/column scanning approaches. For the 
three methods that do not make use of the contextual 
language model (unigram huffman scanning and both 
row/column scanning approaches), we observed a rela-
tively high long code rate, leading to a near doubling of 
the length of codes required for each character in the 
absence of errors and a slow scan rate. The slow scan 
rate reduces the error rates, but does not yield improved 
speeds for any of these methods.

second, the contextual model significantly improves 
huffman scanning. The 8-gram language model reduces 
the optimal bits per character for huffman scanning over 
the unigram model, and reduces the difference between 
the actual bits per character achieved by the participants 
and the optimal. This results in a near doubling of typing 
speed over huffman scanning with the unigram model. 
With the faster calibrated scan rates, linear scanning on 
the grid with the 8-gram model yields nearly the same 
bits per character as huffman scanning. This effect 

results from a decrease in the error rate and long code 
rate with huffman scanning. We believe the reduced 
error rate is influenced by easier visual scanning, result-
ing from just one cell being highlighted at each step, 
drawing the eye to the target cell more quickly. The long 
code rate remains substantially lower for linear scanning 
than for huffman scanning, even at the more leisurely 
fixed scan rate of 600 ms. This same result was observed 
for GB, who noted his preference for linear scanning.

Finally, scanning with the RsVP interface is slower 
than huffman scanning with an 8-gram model or linear 
scanning on the grid, due to an increase in error rate. 
Even so, it yields speeds commensurate with row/column 
scanning. Finding a symbol on the grid and waiting for 
its cell to be highlighted seems to be a slightly easier task 
than recognizing the symbol that appears in the single 
RsVP screen and reacting, even for literate adults with 
no visual attention challenges. The fact that this task 
became easier with the slower fixed scanning rate (error 
rates decreased dramatically) demonstrates the extra 
time demands of recognition and reaction of this condi-
tion versus just watching for a cell in the grid to light up.

The results from different scanning paradigms speak 
to a pressing need to evaluate the visual processing 
demands and working memory requirements of all 
alphabetic scanning systems. While our work highlights 
the contribution of language models to scanning, there 
are many unexplored variables that affect performance. 
Wilkinson, hennig, soto, and Zangari (2009) empha-
sized the multiple and unique cognitive processing 
demands of AAC technologies, without discussing 
alphabetic scanning paradigms for literate users. Thistle 
and Wilkinson (2012) discuss the attention demands of 
dynamic screens and grid layouts with symbols for chil-
dren. Visual attention patterns of adult AAC users with 
aphasia have been explored, again in dynamic screens 
rather than scanning matrices (Thiessen, Beukelman, 
Ullman, & Longenecker, 2014). The rapid chang-
ing demands of letter-based scanning paradigms are 
another visual presentation that deserves our attention, 
and can account for significant variation in learning and 
use by literate individuals with and without disabilities. 
Additional variables, including the specific method of 
error recovery in a particular scanning approach, the 
possibility of imperfect scan rate calibration, and the 
demands of the copy task itself could have an impact 
on typing speed. In previous work, we controlled the 
level of difficulty of phrases in the copy task and con-
tributions of the language model to letter selection, 
and found that both variables affect alternative access 
spelling, in this case with a brain–computer interface 
(Orhan et al., 2012). It is difficult, with user studies, 
to control all influencing factors. When simulations are 
conducted, as in Lesher et al. (1998) or MacKenzie 
(2012), all variables are controlled to examine a full 
range of factors that affect optimal configurations of 
typing systems. The current results cannot be compared 
easily with the outcomes from simulations; or, for that 
matter, to results with an ambiguous keyboard such as 

Table VI. Likert scores for AAC user survey Questions (5  strongly 
Agree; 1  strongly Disagree).

Question
Row/Col

Auto
Huffman

8-grm
Linear
grid

Linear
RSVP

I was fatigued by the end  
of the trial

1 1 1 3

I was stressed by the end  
of the trial

1 1 1 5

I liked this trial 5 5 1 1
I was frustrated by this trial 1 1 5 5
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hansen et al. (2003) or MacKenzie & Felzer (2010). 
The conditions under which we collected data (two user 
studies for individuals with and without disabilities) 
provided substantially different testing situations than 
MacKenzie (2012), which included simulations and 
word completion. Reviewing different stimulus condi-
tions (simulations versus user studies), language model 
contributions (word completion versus no word comple-
tion), and keyboards (ambiguous versus unambiguous) 
will lead to important and interesting questions that this 
paper has left unresolved.

Results for the 16 participants without disabilities 
and for GB, the participant with locked-in syndrome 
for 20 years, were similar for four conditions. For both 
non-disabled and disabled participants, the huffman 
scanning is the fastest of the options, but linear scan-
ning on a grid is competitive due to a lower long code 
rate. Note that for the linear scanning on the grid, GB’s 
bits per character almost mirror the mean of the partici-
pants without disabilities (Table IV), so that the differ-
ences in typing speed can be attributed to differences in 
scan rate. This provides evidence that people who use 
AAC and present with only physical impairments per-
form within normal limits for age-matched peers. Even 
though GB prefers partner-assisted auditory alphabet 
scanning, his technology use resembles that of his non-
disabled peers. he demonstrates that spelling-based 
keyboard interfaces with letter and word prediction for 
individuals who are locked-in are viable clinical options, 
if the individuals retain cognitive and language skills for 
functional expression.

GB’s participation here highlights the unique role 
that people with severe disabilities should play in all 
AAC research. While disability advocates remind us of 
“nothing about me without me” (Delbanco et al., 2001), 
this concept is not always practiced during technology 
research and development. Often we read about experi-
ments with symbol sets or device layouts that have been 
presented to children without disabilities, or engineer-
ing efforts that simulate conditions without including 
potential users. In fact, the challenges that are posed to 
people with severe speech and physical impairments are 
the very barriers that we must address in research. These 
barriers may affect attitudes toward adoption or aban-
donment, the availability of customization options and 
preferences for device features, and the ultimate chal-
lenge of real time implementation. GB and other indi-
viduals with disabilities who are research consultants or 
disability advocates are the experts who we must learn 
from. Their opinions, equipment testing, feedback and 
experimental results validate research and development 
efforts. GB tells us that he participates in research so 
that he can help others who are less fortunate than he is. 
By examining his behavior, we are given an opportunity 
to scientifically answer the real questions that should be 
asked. Inclusion of GB and others with complex com-
munication needs provides a level of AAC validity that 
leads to measurement and interpretation of the relevant 
constructs or ideas.

We have demonstrated the importance of contextual 
language modeling for the usability of huffman scan-
ning. An extension of this work would be the investigation 
of learning effects on message generation with scanning 
paradigms. The order of paradigm presentation or even 
the repetitive text stimuli might have affected results. We 
report results from novice users of scanning interfaces, 
with the exception of our participant who uses AAC. 
some of the differences between the calibrated experi-
ment and the fixed rate scanning experiment were likely 
due to novice users having high error rates with very 
fast scan rates, a skill that should improve with train-
ing. Further, the frequency ordered grid more heav-
ily impacts speed for novices than expert users, since 
expert users are familiar with the order of letters on the 
grid. The effect of training would determine whether 
expertise speeds up huffman and linear scanning as 
much as row/column scanning, a research question that 
should be explored. These could be addressed easily 
through simulations but would not provide the human– 
computer interface results that we explored.

Additional investigations are warranted to optimize 
performance for users based on their individual prefer-
ences and behaviors. Parameters can be adjusted, and 
are customizable in currently available AAC scanning 
systems. It is difficult to control for individual variability, 
and based on our sample size, we cannot conclude that 
huffman scanning is faster than various kinds of row/
column scanning. We asked whether scanning based 
on huffman codes – which are guaranteed to yield the 
best optimal bits per character – would be found to be 
sufficiently useable by individuals as a viable alterna-
tive to available scanning methods. Based on the results 
presented here, it is clear that the huffman scanning 
was found to be sufficiently useable to capture much 
of the gain promised by the optimal huffman codes. In 
fact, GB, the participant who uses AAC, typed faster 
with huffman scanning than with row/column scan-
ning. Within AAC, there are currently too few options 
to speed up text entry for the literate person who relies 
on scanning access for message generation. huffman 
scanning may provide a potentially useful alternative.          
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Huffman and Linear Scanning  13

© 2014 International Society for Augmentative and Alternative Communication

The specs3. TM switch is manufactured and sold by 
AbleNet, Inc. of Roseville, MN, UsA.
The Universal switch Mounting system4. TM is man-
ufactured and sold by AbleNet, Inc. of Roseville, 
MN, UsA.
The Jelly Bean switch5. TM is manufactured and sold 
by AbleNet, Inc. of Roseville, MN, UsA.
Apple IIe computer is the third model Apple II 6. 
series of personal computers produced by Apple 
Computer of Cupertino, CA, UsA.
Discover: KENX is a keyboard interface designed 7. 
to access a computer using a choice of methods 
other than a standard keyboard that was manufac-
tured by Don Johnston Inc. of Volo, IL, UsA, and 
is a trademark of Madentec Limited, of Edmonton, 
Alberta, Canada.
Co:Writer is word prediction software manufac-8. 
tured by Don Johnston Inc. of  Volo, IL, UsA.
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