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Abstract

This paper describes discriminative language modeling for a large vocabulary speech recognition task. We contrast two
parameter estimation methods: the perceptron algorithm, and a method based on maximizing the regularized conditional
log-likelihood. The models are encoded as deterministic weighted finite state automata, and are applied by intersecting the
automata with word-lattices that are the output from a baseline recognizer. The perceptron algorithm has the benefit of
automatically selecting a relatively small feature set in just a couple of passes over the training data. We describe a method
based on regularized likelihood that makes use of the feature set given by the perceptron algorithm, and initialization with
the perceptron’s weights; this method gives an additional 0.5% reduction in word error rate (WER) over training with the
perceptron alone. The final system achieves a 1.8% absolute reduction in WER for a baseline first-pass recognition system
(from 39.2% to 37.4%), and a 0.9% absolute reduction in WER for a multi-pass recognition system (from 28.9% to 28.0%).
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

A crucial component of any speech recognizer is the language model (LM), which assigns scores or prob-
abilities to candidate output strings in a speech recognizer. The language model is used in combination with an
acoustic model, to give an overall score to candidate word sequences that ranks them in order of probability or
plausibility.

A dominant approach in automatic speech recognition (ASR) has been to use a ‘‘source-channel’’, or
‘‘noisy-channel’’ model. In this approach, language modeling is effectively framed as probability estimation:
the language model’s task is to define a distribution over the source – i.e., the possible strings in the language.
Markov (n-gram) models are often used for this task, whose parameters are optimized to maximize the like-
lihood of a large amount of training text. Recognition performance is a direct measure of the effectiveness of a
0885-2308/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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language model; an indirect measure which is frequently proposed within these approaches is the perplexity of
the LM (i.e., the log probability it assigns to some held-out data set).

This paper explores alternative methods for language modeling, which complement the source-channel
approach through discriminatively trained models. The language models we describe do not attempt to esti-
mate a generative model P(w) over strings. Instead, they are trained on acoustic sequences with their transcrip-
tions, in an attempt to directly optimize error-rate. In particular, we use the perceptron algorithm to build a
discriminative global linear model, and we also explore global conditional log-linear models (GCLMs) as a
parameter estimation method.2 We describe how these models can be trained over lattices that are the output
from a baseline recognizer. We also give a number of experiments comparing the two approaches. The per-
ceptron method gives a 1.3% absolute improvement in first-pass recognition error on the Switchboard domain,
and a 0.5% multi-pass improvement; the GCLM methods we describe provide absolute gains of 1.8% for first-
pass recognition and 0.9% for multi-pass.

A central issue that we discuss is feature selection. The number of distinct n-grams in our training data is
close to 45 million, and we show that GCLM training converges very slowly even when trained with a subset
(of size 12 million) of these features. Because of this, we have explored methods for picking a small subset of
the available features.3 The perceptron algorithm can be used as one method for feature selection, selecting
around 1.5 million features in total. The GCLM trained with this feature set, and initialized with parameters
from perceptron training, converges much more quickly than other approaches, and also gives the best per-
formance on the held-out set. We explored other approaches to feature selection, but found that the percep-
tron-based approach gave the best results in our experiments.

While we focus on n-gram models, we stress that our methods are applicable to more general language
modeling features – for example, syntactic features, as explored in, e.g., Khudanpur and Wu (2000). See Col-
lins et al. (2005) for results using some syntactic features in this approach. Experimental results with n-gram
models on 1000-best lists show a very small drop in accuracy compared to the use of lattices. This is encour-
aging, in that it suggests that models with more flexible features than n-gram models, which therefore cannot
be efficiently used with lattices, may not be unduly harmed by their restriction to n-best lists.

1.1. Related work

Large vocabulary ASR has benefited from discriminative estimation of hidden Markov model (HMM)
parameters in the form of maximum mutual information estimation (MMIE) or conditional maximum like-
lihood estimation (CMLE). Woodland and Povey (2000) have shown the effectiveness of lattice-based MMIE/
CMLE in large–scale ASR tasks such as Switchboard. Povey and Woodland (2002) have introduced minimum
phone error (MPE) and minimum word error (MWE) criteria for the discriminative training of HMM sys-
tems. In fact, state-of-the-art acoustic modeling, as seen, for example, at annual Switchboard evaluations,
invariably includes some kind of discriminative training.

Discriminative estimation of language models has also been proposed in recent years. Jelinek (1996) sug-
gested an acoustic–sensitive language model whose parameters are estimated by minimizing H(WjA), the
expected uncertainty of the spoken text W given A, the acoustic sequence. Stolcke and Weintraub (1998)
experimented with various discriminative approaches, including MMIE, with mixed results. This work was
followed up with some success by Stolcke et al. (2000) where an ‘‘anti-LM’’, estimated from weighted N-best
hypotheses of a baseline ASR system, was used with a negative weight in combination with the baseline LM.
Chen et al. (2000) presented a method based on changing the trigram counts discriminatively, together with
changing the lexicon to add new words. Kuo et al. (2002) used the generalized probabilistic descent (GPD)
algorithm to train relatively small language models which attempt to minimize string error rate on the
DARPA Communicator task. This is an instance of the widely known minimum classification error (MCE)
2 In a previous paper (Roark et al., 2004b), we described these models as an instance of conditional random fields (CRFs) (Lafferty et al.,
2001). While certainly similar to CRFs, our models are technically not CRFs (see Section 2.2 for discussion), so we will not use this term in
the current paper for our models.

3 Note also that in addition to concerns about training time, a language model with fewer features is likely to be considerably more
efficient when decoding new utterances.
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training. Banerjee et al. (2003) used a language model modification algorithm in the context of a reading tutor
that listens. Their algorithm first uses a classifier to predict what effect each parameter has on the error rate,
and then modifies the parameters to reduce the error rate based on this prediction.

Of the above approaches, only Stolcke and Weintraub (1998) experimented with an objective function of
the sort used to estimate the GCLMs we describe in this paper: a straightforward maximum conditional like-
lihood objective, conditioned on the entire input sequence.4 This was one of two objectives they investigated
for estimation of a unigram model, and it yielded no gain over their baseline unigram model. Our GCLM
approach is also similar to the work of Rosenfeld et al. (2001), with the difference that GCLMs are estimated
using discriminative methods.

Various other approaches have been proposed that attempt to estimate parameters in a way that minimizes
word error rate (Goel and Byrne, 2000), ranging from discriminative parameter adjustment algorithms (Bahl
et al., 1993) to post-processing on recognizer output (Mangu and Padmanabhan, 2001; Ringger and Allen,
1996) and confusion network construction (Mangu et al., 2000; Mangu and Padmanabhan, 2001). One of
the earliest papers on the topic (Bahl et al., 1993) motivated its approach by reference to the perceptron algo-
rithm, and, proposed a technique for corrective training of discrete output HMM parameters for acoustic
modeling.

2. Global linear models

This section describes a general framework, global linear models, and two parameter estimation methods
within the framework, the perceptron algorithm and a method based on maximizing the regularized condi-
tional log-likelihood. The linear models we describe are general enough to be applicable to a diverse range
of natural language processing (NLP) and speech tasks – this section gives a general description of the
approach. In Section 3 of this paper we describe how global linear models can be applied to speech recogni-
tion. In particular, we focus on how the decoding and parameter estimation problems can be implemented
over lattices using finite-state techniques.

We follow the framework outlined in Collins (2002, 2004). The task is to learn a mapping from inputs x 2 X
to outputs y 2 Y. We assume the following components: (1) Training examples (xi,yi) for i = 1. . .N. (2) A
function GEN which enumerates a finite set of candidates GENðxÞ � Y for each possible input x. (3) A rep-

resentation U mapping each ðx; yÞ 2 X�Y to a feature vector Uðx; yÞ 2 Rd . (4) A parameter vector �a 2 Rd .
The components GEN, U and �a define a mapping from an input x to an output F(x) through
4 No
that it
F ðxÞ ¼ arg max
y2GENðxÞ

Uðx; yÞ � �a ð1Þ
where Uðx; yÞ � �a is the inner product
P

sasUsðx; yÞ. The learning task is to set the parameter values �a using the
training examples as evidence. The decoding algorithm is a method for searching for the y that maximizes Eq.
(1).

2.1. The perceptron algorithm

We now turn to methods for training the parameters �a of the model, given a set of training examples
(x1,y1). . .(xN,yN). This section describes the perceptron algorithm and the next section describes an alternative
method, based on maximizing the regularized conditional log-likelihood.

The perceptron algorithm is shown in Fig. 1. At each training example (xi,yi), the current best-scoring
hypothesis zi is found, and if it differs from the reference yi, then the weight of each feature is increased by
the count of that feature in yi and decreased by the count of that feature in zi. The weights in the model
are updated, and the algorithm moves to the next utterance.

We will now give a first theorem regarding the convergence of this algorithm. First, we need the following
definition:
te, however, that the objective in Stolcke and Weintraub (1998) was unregularized, which, based on our results, is one likely reason
failed to yield improvements.



Fig. 1. A variant of the perceptron algorithm. The value for T, the number of passes over the training set, is chosen by validation on a held
out set. In practice we used the averaged parameter values after T iterations, see the text for details.
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Definition 1. Let GENðxiÞ ¼ GENðxiÞ � fyig. In other words GENðxiÞ is the set of incorrect candidates for an
example xi. We will say that a training sequence (xi,yi) for i = 1. . .N is separable with margin d > 0 if there
exists some vector U with kUk = 1 such that
5 To
conver

6 No
necess
under
solutio
which
(2003)
8i; 8z 2 GENðxiÞ;U � Uðxi; yiÞ �U � Uðxi; zÞP d ð2Þ

(kUk is the 2-norm of U, i.e., kUk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiP
sU

2
s

q
.)

Next, define Ne to be the number of times an error is made by the algorithm in Fig. 1 – that is, the number of
times that the condition zi5yi is met at any point in the algorithm. We can then state the following theorem
(see Collins, 2002, for a proof):

Theorem 1. For any training sequence (xi, yi) that is separable with margin d, for any value of T, then for the

perceptron algorithm in Fig. 1
N e 6
R2

d2
where R is a constant such that "i, 8z 2 GENðxiÞ kUðxi; yiÞ � Uðxi; zÞk 6 R.

This theorem implies that if there is a parameter vector U which makes zero errors on the training set, then
after at most R2

d2 passes over the training set the training algorithm will converge to parameter values with zero
training errors.5 A crucial point is that the number of mistakes is independent of the number of candidates for
each example (i.e. the size of GEN(xi) for each i), depending only on the separation of the training data, where
separation is defined above. This is important because in ASR the number of candidates in GEN(x) is gener-
ally exponential in the length of the utterance. All of the convergence and generalization results in (Collins,
2002) depend on notions of separability rather than the size of GEN.6

Two questions come to mind. First, are there guarantees for the algorithm if the training data is not sep-
arable? Second, generalize to newly drawn test examples (under an assumption that both training and test
examples are drawn from the same, unknown distribution P(x,y))? Freund and Schapire (1999) discuss
how the theory for classification problems can be extended to deal with both of these questions; Collins
(2002) describes how these results apply to NLP problems.

Following Collins (2002), we used the averaged parameters from the training algorithm in decoding held-
out and test examples in our experiments. Say �at

i is the parameter vector after the ith example is processed on
the tth pass through the data in the algorithm in Fig. 1. Then the averaged parameters �aAVG are defined as
see this, note that if the algorithm makes a complete pass over the training examples without making any errors, then it must have
ged; and furthermore, in the worst case it makes N e 6

R2

d2 passes over the training set, each with a single error, before converging.
te, however, that in practice as the size of GEN becomes larger, the separability of problems may well diminish, although this is not
arily the case. Even so, the lack of direct dependence on jGEN(x)j for the perceptron algorithm is somewhat surprising. For example,
the same assumptions for the training set, the tightest known generalization bounds for the support vector machine or large margin
n (which explicitly searches for the parameter vector with the largest separation on training examples) contains a logjGEN(x)j factor
is not present in the perceptron convergence or generalization bounds – see (Collins, 2002) for discussion. (Note that Taskar et al.
do describe a tighter bound, but this depends on a modified definition of margins on the training examples.)
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�aAVG ¼
P

i;t�a
t
i=NT . Freund and Schapire (1999) originally proposed the averaged parameter method; it was

shown to give substantial improvements over the regular perceptron in accuracy for tagging tasks in Collins
(2002). The averaged perceptron can be seen as an approximation of the ‘‘voted perceptron’’, an algorithm
also described by Freund and Schapire (1999). The voted perceptron is motivated by statistical bounds on gen-
eralization performance given in (Freund and Schapire, 1999).

2.2. Global conditional log-linear models

Global conditional log-linear models (GCLMs) use the parameters �a to define a conditional distribution
over the members of GEN(x) for a given input x:
7 Mo
p�aðyjxÞ ¼
1

Zðx; �aÞ expðUðx; yÞ � �aÞ ð3Þ
where Zðx; �aÞ ¼
P

y2GENðxÞ expðUðx; yÞ � �aÞ is a normalization constant that depends on x and �a.
Early work on GCLMs for NLP applied them to parsing (Ratnaparkhi et al., 1994; Johnson et al., 1999). In

(Ratnaparkhi et al., 1994), n-best output from an existing probabilistic parser was used to define GEN(x) for
each input sentence x. In (Johnson et al., 1999) all parses from a non-probabilistic parser defined the set
GEN(x). In both of these papers U(x,y) was allowed to include essentially arbitrary features of parse trees
y and their yields x.

Conditional random fields (CRFs) (Lafferty et al., 2001; Sha and Pereira, 2003; McCallum and Li, 2003;
Pinto et al., 2003) are a sub-class of GCLMs that are particularly relevant to our problem. CRFs define
GEN(x) to be the space of vectors fy1; y2 . . . ylðxÞg 2 Y1 �Y2 � � � �YlðxÞ, where each Yk is a finite ‘‘label
set’’ for the kth random variable, and l(x) is a ‘‘size’’ that can vary with the input x. As a simple example,
in part-of-speech tagging, for a sentence x of length l(x), Yk would be the set of possible part-of-speech tags
for the kth word in the sentence. Crucially, in CRFs, U(x,y) is defined through a graphical structure over the
variables {y1,y2. . .yl(x)}. The representation U(x,y) is defined as a sum of feature-vectors associated with cli-
ques in the graph. Under these assumptions, assuming that the underlying graph has good properties,7 CRFs
can be trained efficiently in spite of the size of GEN(x) being exponential in the number of labels l(x). The
training algorithm makes use of standard dynamic programming algorithms in Markov random fields to cal-
culate the gradient of the log-likelihood under the model. See (Lafferty et al., 2001) for full details.

The GCLMs that we present for language modeling in the current paper are similar to CRFs, in that
GEN(x) is again exponential in size, and we rely on the ‘‘local’’ nature of our feature vector representation
U(x,y) to give us dynamic programming algorithms for training and decoding. As for CRFs, these algorithms
are efficient in spite of the large size of GEN(x). Our approach differs from CRFs, however, in that our prob-
lem is not structured as an undirected graphical model, or Markov random field. Instead, we will make use of
algorithms and concepts from weighted finite-state automata – as opposed to Markov random fields – in this
paper.

Given the definition in Eq. (3), the log-likelihood of the training data under parameters �a is
LLð�aÞ ¼
XN

i¼1

log p�aðyijxiÞ ¼
XN

i¼1

½Uðxi; yiÞ � �a� log Zðxi; �aÞ� ð4Þ
Note that this is very similar to the objective functions used in other discriminative training approaches. The
objective function for MMIE/CMLE has the same form and the one for MCE could be considered as an
extension.

Following Johnson et al. (1999) and Lafferty et al. (2001), we use a zero-mean Gaussian prior on the param-
eters resulting in the regularized objective function:
LLRð�aÞ ¼
XN

i¼1

½Uðxi; yiÞ � �a� log Zðxi; �aÞ� �
k�ak2

2r2
ð5Þ
re specifically, the graph must have relatively low ‘‘tree-width’’ for there to be efficient training and decoding algorithms.
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The value r dictates the relative influence of the log-likelihood term vs. the prior, and is typically estimated
using held-out data. (For example, in the experiments in this paper we choose a value of r that minimizes
the word-error-rate on a development data set.) The optimal parameters under this criterion are
�a� ¼ arg max�aLLRð�aÞ.

We use a limited memory variable metric method (Benson and Moré, 2002) to optimize LLR. There is a gen-
eral implementation of this method in the Tao/PETSc software libraries (Balay et al., 2002; Benson et al.,
2002). This technique has been shown to be very effective in a variety of NLP tasks (Malouf, 2002; Wallach,
2002). The main interface between the optimizer and the training data is a procedure which takes a parameter
vector �a as input, and in turn returns LLRð�aÞ as well as the gradient of LLR at �a. The derivative of the objective
function with respect to a parameter as at parameter values �a is
8 Th
log Zðx
section
oLLR

oas
¼
XN

i¼1

Usðxi; yiÞ �
X

y2GENðxiÞ
p�aðyjxiÞUsðxi; yÞ

" #
� as

r2
ð6Þ
Note that LLRð�aÞ is a convex function,8 so that there are no issues with local maxima in the objective function,
and the optimization methods we use converge to the globally optimal solution. The use of the Gaussian prior
term k�ak2

=2r2 in the objective function has been found to be useful in several NLP settings. It effectively en-
sures that there is a large penalty for parameter values in the model becoming too large – as such, it tends to
control over-training. The choice of LLR as an objective function can be justified as maximum a-posteriori
(MAP) training within a Bayesian approach. An alternative justification comes through a connection to sup-
port vector machines and other large margin approaches. SVM-based approaches use an optimization crite-
rion that is closely related to LLR – see Collins (2004) for more discussion.

3. Linear models for speech recognition

We now describe how the formalism and algorithms in Section 2 can be applied to language modeling for
speech recognition.

3.1. The basic approach

As described in the previous section, linear models require definitions of X;Y, xi, yi, GEN, U and a param-
eter estimation method. In the language modeling setting we take X to be the set of all possible acoustic
inputs; Y is the set of all possible strings, R*, for some vocabulary R. Each xi is an utterance (a sequence
of acoustic feature-vectors), and GEN(xi) is the set of possible transcriptions under a first pass recognizer.
(GEN(xi) is a huge set, but will be represented compactly using a lattice – we will discuss this in detail shortly).
We take yi to be the member of GEN(xi) with lowest error rate with respect to the reference transcription of xi.

All that remains is to define the feature-vector representation, U(x,y). In the general case, each component
Us(x,y) could be essentially any function of the acoustic input x and the candidate transcription y. The first
feature we define is U0(x,y), which is defined as the log-probability of x,y in the lattice produced by the baseline

recognizer. Thus this feature will include contributions from the acoustic model and the original language
model.

The baseline recognizer is parameterized to weight the language model at a cetain level relative to the acous-
tic model, which controls the language model combines with the acoustic model to produce the baseline score
for the word sequence. We did not change this standard parameterization for the work in this paper, i.e. we
took the log score output by the baseline recognizer unmodified for use in training and applying the models.
The lattice is deterministic, so that any word sequence has at most one path through the lattice. Thus multiple
time-alignments for the same word sequence are not represented; the path associated with a word sequence is
the path that receives the highest probability among all competing time alignments for that word sequence.
is is a well known property of the regularized likelihood function in Eq. (5). Convexity follows because: 1) k�ak
2

2r2 is convex in �a; 2)

i; �aÞ is convex in �a for any value of xi (the latter property is central to the theory of exponential families in statistics, see for example
3 of Wainwright and Jordan (2002)); 3) a function that is a sum of convex functions is also convex.
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The remaining features are restricted to be functions over the transcription y alone and they track all n-
grams up to some length (say n = 3), for example:
U1ðx; yÞ ¼ Number of times \the the of " is seen in y
At one level of abstraction, features of this form are introduced for all n-grams up to length 3 seen in some
training data lattice, i.e., n-grams seen in any word sequence within the lattices. In practice, we consider meth-
ods that search for sparse parameter vectors �a, thus assigning many n-grams 0 weight. This will lead to more
efficient algorithms, which avoid dealing explicitly with the entire set of n-grams seen in training data.

3.2. Implementation using WFA

We now give a brief sketch of how weighted finite-state automata (WFA) can be used to implement linear
models for speech recognition. There are several papers describing the use of weighted automata and trans-
ducers for speech in detail, e.g., Mohri et al. (2002), but for clarity and completeness this section gives a brief
description of the operations which we use.

For our purpose, a WFA A is a tuple (R,Q,qs,F,E, q), where R is the vocabulary, Q is a (finite) set of states,
qs 2 Q is a unique start state, F � Q is a set of final states, E is a (finite) set of transitions, and q : F ! R is a
function from final states to final weights. Each transition e 2 E is a tuple e = (l[e],p[e],n[e], w[e]), where l[e] 2 R
is a label (in our case, a word), p[e] 2 Q is the origin state of e, n[e] 2 Q is the destination state of e, and
w½e� 2 R is the weight of the transition. A successful path p = e1. . .ej is a sequence of transitions, such that
p[e1] = qs, n[ej] 2 F, and for 1 < k 6 j, n[ek�1] = p[ek]. Let PA be the set of successful paths p in a WFA A.
For any p = e1. . .ej, l[p] = l[e1]. . .l[ej].

The weights of the WFA in our case are always in the log semiring, which means that the weight of a path
p = e1. . .ej 2 PA is defined as:
wA½p� ¼
Xj

k¼1

w½ek�
 !

þ qðejÞ ð7Þ
All WFA that we will discuss in this paper are deterministic, i.e. there are no � transitions, and for any two
transitions e, e 0 2 E, if p[e] = p[e 0], then l[e] 5 l[e 0]. Thus, for any string w = w1. . .wj, there is at most one suc-
cessful path p 2 PA, such that p = e1. . .ej and for 1 6 k 6 j, l[ek] = wk, i.e. l[p] = w. The set of strings w such
that there exists a p 2 PA with l[p] = w define a regular language LA � R*.

We can now define some operations that will be used in this paper.

• kA. For a set of transitions E and k 2 R, define kE = {(l[e],p[e],n[e],kw[e]): e 2 E}. Then, for any WFA
A = (R,Q,qs,F,E,q), define kA for k 2 R as follows: k A = (R,Q,qs,F,kE,kq).

• A � A 0. The intersection of two deterministic WFAs A � A 0 in the log semiring is a deterministic WFA such
that LA�A0 ¼ LA

T
LA0 . For any p 2 PA�A0 ;wA�A0 ½p� ¼ wA½p1� þ wA0 ½p2�, where lA�A0 ½p� ¼ lA½p1� ¼ lA0 ½p2�.

• BestPath(A). This operation takes a WFA A, and returns the best scoring path p̂ ¼ argmaxp2PA
wA½p�.

• MinErr(A,y). Given a WFA A, a string y, and an error-function E(y,w), this operation returns
p̂ ¼ argminp2PA

Eðy; l½p�Þ. This operation will generally be used with y as the reference transcription for a
particular training example, and E(y,w) as some measure of the number of errors in w when compared
to y. In this case, the MinErr operation returns the path p 2 PA such l[p] has the smallest number of errors
when compared to y.

• Norm(A). Given a WFA A, this operation yields a WFA A 0 such that LA ¼ LA0 and for every p 2 PA there is
a p0 2 PA0 such that l[p] = l[p 0] and
wA0 ½p0� ¼ wA½p� � log
X
�p2PA

expðwA½�p�Þ
 !

ð8Þ
Note that
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X
p2NormðAÞ

expðwNormðAÞ½p�Þ ¼ 1 ð9Þ
In other words the weights define a probability distribution over the paths.
• ExpCount(A,w). Given a WFA A and an n-gram w, we define the expected count of w in A as
ExpCountðA;wÞ ¼
X
p2PA

expðwNormðAÞ½p�ÞCðw; l½p�Þ
where C(w, l[p]) is defined to be the number of times the n-gram w appears in a string l[p].

Given an acoustic input x, let Lx be a deterministic word-lattice produced by the baseline recognizer. The
lattice Lx is an acyclic WFA, representing a weighted set of possible transcriptions of x under the baseline
recognizer. The weights represent the combination of acoustic and language model scores in the original
recognizer.

The new, discriminative language model constructed during training consists of a deterministic WFA which
we will denote D, together with a single parameter a0. The parameter a0 is the weight for the log probability
feature U0 given by the baseline recognizer. The WFA D is constructed so that LD ¼ R� and for all p 2 PD
wD½p� ¼
Xd

j¼1

Ujðx; l½p�Þaj
Recall that d is the dimension of the feature and parameter vectors, Uj(x,w) for j > 0 is the count of the jth n-
gram in w, and aj is the parameter associated with that n-gram. Then, by definition, a0L �D accepts the same
set of strings as L, but
wa0L�D½p� ¼
Xd

j¼0

Ujðx; l½p�Þaj
and
argmaxp2LUðx; l½p�Þ � �a ¼ BestPathða0L �DÞ:

Thus decoding under our new model involves first producing a lattice L from the baseline recognizer; second,
scaling L with a0 and intersecting it with the discriminative language model D; third, finding the best scoring
path in the new WFA.

We now turn to training a model, or more explicitly, deriving a discriminative language model ðD; a0Þ from
a set of training examples. Given a training set (xi, ri) for i = 1. . .N, where xi is an acoustic sequence, and ri is a
reference transcription, we can construct lattices Li for i = 1. . .N using the baseline recognizer. We can also
derive target transcriptions yi ¼MinErrðLi; riÞ. The training algorithm is then a mapping from ðLi; yiÞ for
i = 1. . .N to a pair ðD; a0Þ. Note that the construction of the language model requires two choices. The first
concerns the choice of the set of n-gram features Uj for j = 1. . .d implemented by D. The second concerns the
choice of parameters aj for j = 0. . .d which assign weights to the n-gram features as well as the baseline feature
U0.

Before describing methods for training a discriminative language model, we give a little more detail about
the structure of D, focusing on how n-gram language models can be implemented with finite-state techniques.

3.3. Representation of n-gram language models

An n-gram model can be efficiently represented in a deterministic WFA, through the use of failure transi-
tions (Allauzen et al., 2003). Every string accepted by such an automaton has a single path through the autom-
aton, and the weight of the string is the sum of the weights of the transitions in that path. In such a
representation, every state in the automaton represents an n-gram history h, e.g. wi�2wi�1, and there are tran-
sitions leaving the state for every word wi such that the feature hwi has a weight. There is also a failure tran-
sition leaving the state, labeled with some reserved symbol /, which can only be traversed if the next symbol in
the input does not match any transition leaving the state. This failure transition points to the backoff state h 0,
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Fig. 2. Representation of a trigram model with failure transitions.
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i.e. the n-gram history h minus its initial word. Fig. 2 shows how a trigram model can be represented in such an
automaton. See Allauzen et al. (2003) for more details.

Note that in such a deterministic representation, the entire weight of all features associated with the word wi

following history h must be assigned to the transition labeled with wi leaving the state h in the automaton. For
example, if h = wi�2wi�1, then the trigram wi�2wi�1wi is a feature, as is the bigram wi�1wi and the unigram wi.
In this case, the weight on the transition wi leaving state h must be the sum of the trigram, bigram and unigram
feature weights. If only the trigram feature weight were assigned to the transition, neither the unigram nor the
bigram feature contribution would be included in the path weight. In order to ensure that the correct weights
are assigned to each string, every transition encoding an order k n-gram must carry the sum of the weights for
all n-gram features of orders 6k. To ensure that every string in R* receives the correct weight, for any n-gram
hw represented explicitly in the automaton, h 0w must also be represented explicitly in the automaton, even if its
weight is 0. Otherwise, there is no guarantee that a string containing the n-gram h 0w will be able to reach the
state in the automaton corresponding to this n-gram.

3.4. The perceptron algorithm

The perceptron algorithm is incremental, meaning that the language model D is built one training example
at a time, during several passes over the training set. Initially, we build D to be the (trivial) automaton that
accepts all strings in R* with weight 0. For the perceptron experiments, we chose the parameter a0 to be a fixed
constant, chosen by optimization on the held-out set. The algorithm in Fig. 1 is implemented as follows:

Inputs: Lattices Li and reference transcriptions ri for i = 1. . .N. A value for the parameter a0.
Initialization: Set D to be a WFA that accepts all strings in R* with weight 0. Set yi ¼MinErrðLi; riÞ for
i = 1. . .N.
Algorithm: For t = 1. . .T, i = 1. . .N:
• Calculate zi ¼ arg maxy2GENðxiÞUðxi; yÞ � �a ¼ BestPathða0Li �DÞ.
• For all j for j = 1. . .d such that Uj(xi,yi) 5 Uj(xi,zi) apply the update aj aj + Uj(xi,yi) � Uj(xi,zi). Mod-

ify D to incorporate these parameter changes.

In addition, averaged parameters need to be stored (see Section 2.1). These parameters will replace the un-
averaged parameters in D once training is completed.

Note that the only n-gram features to be included in D at the end of the training process are those that
occur in either a best scoring path zi or a minimum error path yi at some point during training.9 Thus the per-
ceptron algorithm is in effect doing feature selection as a by-product of training. Given N training examples,
and T passes over the training set, O(NT) n-grams will have non-zero weight after training. Experiments
9 In fact, only features that differ in count between the best scoring path and the minimum error path will be updated, resulting in an
even smaller set of features with non-zero parameters.
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suggest that the perceptron reaches optimal performance after a small number of training iterations, for exam-
ple T = 1 or T = 2. Thus O(NT) can be very small compared to the full number of n-grams seen in all training
lattices. In our experiments, the perceptron method chose around 1.4 million n-grams with non-zero weight.
This compares to 43.65 million possible n-grams seen in the training data.

This is a key contrast with conditional log-likelihood maximization, which optimizes the parameters of a
fixed feature set. Feature selection can be critical in our domain, as training and applying a discriminative lan-
guage model over all n-grams seen in the training data (in either correct or incorrect transcriptions) may be
computationally very demanding. One training scenario that we will consider will be using the output of
the perceptron algorithm (the averaged parameters) to provide the feature set and the initial feature weights
for use in the conditional log-likelihood optimization algorithm. This leads to a model which is reasonably
sparse, but has the benefit of maximizing the conditional log-likelihood, which as we will see gives gains in
performance.

3.5. Global conditional log-linear models

The GCLM optimization methods that we use assume a fixed definition of the n-gram features Uj for
j = 1. . .d in the model. In the experimental section we will describe a number of ways of defining the feature
set. The optimization methods we use begin at some initial setting for �a, and then search for the parameters �a�

which maximize LLRð�aÞ as defined in Eq. (5).
The optimization method requires calculation of LLRð�aÞ and the gradient of LLRð�aÞ for a series of values

for �a. The first step in calculating these quantities is to take the parameter values �a, and to construct an accep-
tor D which accepts all strings in R*, such that
wD½p� ¼
Xd

j¼1

Ujðx; l½p�Þaj
For each training lattice Li, we then construct a new lattice L0
i ¼ Normða0Li �DÞ. The lattice L0

i represents
(in the log domain) the distribution p�aðyjxiÞ over strings y 2 GEN(xi). The value of log p�aðyijxiÞ for any i can be
computed by simply taking the path weight of p such that l[p] = yi in the new lattice L0

i. Hence computation of
LLRð�aÞ in Eq. (5) is straightforward.

Calculating the n-gram feature gradients for the GCLM optimization is also relatively simple, once L0
i has

been constructed. From the derivative in Eq. (6), for each i = 1. . .N, j = 1. . .d the quantity
Ujðxi; yiÞ �
X

y2GENðxiÞ
p�aðyjxiÞUjðxi; yÞ ð10Þ
must be computed. The first term is simply the number of times the jth n-gram feature is seen in yi. The second
term is the expected number of times that the jth n-gram is seen in the acceptor L0

i. If the jth n-gram is w1. . .wn,
then this can be computed as ExpCountðL0

i;w1 . . . wnÞ. The GRM library, which was presented in Allauzen
et al. (2003), has a direct implementation of the function ExpCount, which simultaneously calculates the ex-
pected value of all n-grams of order less than or equal to a given n in a lattice L.

The one non-ngram feature weight that is being estimated is the weight a0 given to the baseline ASR log
probability. Calculation of the gradient of LLR with respect to this parameter again requires calculation of
the term in Eq. (10) for j = 0 and i = 1. . .N. Computation of

P
y2GENðxiÞp�aðyjxiÞU0ðxi; yÞ turns out to be not

as straightforward as calculating n-gram expectations. To do so, we rely upon the fact that U0(xi,y), the log
probability of the path, decomposes to the sum of log probabilities of each transition in the path. We index
each transition in the lattice Li, and store its log probability under the baseline model. We can then cal-
culate the required gradient from L0

i, by calculating the expected value in L0
i of each indexed transition

in Li.
We found that an approximation to the gradient of a0, however, performed nearly identically to this exact

gradient, while requiring substantially less computation. Let wn
1 be a string of n words, labeling a successful

path in word-lattice L0
i. For brevity, let Piðwn

1Þ ¼ p�aðwn
1jxiÞ be the conditional probability under the current
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model, and let Qiðwn
1Þ be the probability of wn

1 in the normalized baseline ASR lattice NormðLiÞ. Let Li be the
set of strings in the language defined by Li. Then we wish to compute Ei for i = 1. . .N, where
Ei ¼
X
wn

1
2Li

Piðwn
1Þ log Qiðwn

1Þ ¼
X
wn

1
2Li

X
k¼1...n

Piðwn
1Þ log Qiðwkjwk�1

1 Þ ð11Þ
The approximation is to make the following Markov assumption:
Ei 	
X
wn

1
2Li

X
k¼1...n

Piðwn
1Þ log Qiðwkjwk�1

k�2Þ ¼
X

xyz2Si

ExpCountðL0
i; xyzÞ log QiðzjxyÞ ð12Þ
where Si is the set of all trigrams seen in Li. The term logQi(zjxy) can be calculated once before training for
every lattice in the training set; the ExpCount term is calculated as before using the GRM library. We have
found this approximation to be effective in practice, and it was used for the trials reported below.

When the gradients and conditional likelihoods are collected from all of the utterances in the training set,
the contributions from the regularizer are combined to give an overall gradient and objective function value.
These values are provided to the parameter estimation routine, which then returns the parameters for use in
the next iteration. The accumulation of gradients for the feature set is the most time consuming part of the
approach, but this is parallelizable, so that the computation can be divided among many processors.

4. Empirical results

We present empirical results on the Rich Transcription 2002 evaluation test set (rt02), which we used as our
development set, as well as on the Rich Transcription 2003 Spring evaluation CTS test set (rt03). The rt02 set
consists of 6081 sentences (63,804 words) and has three subsets: Switchboard 1, Switchboard 2, Switchboard
Cellular. The rt03 set consists of 9050 sentences (76,083 words) and has two subsets: Switchboard and Fisher.

The training set consists of 276,726 transcribed utterances (3,047,805 words), with an additional 20,854
utterances (249,774 words) as held out data. For each utterance, a weighted word-lattice was produced, rep-
resenting alternative transcriptions, from the ASR system. From each word-lattice, the oracle best path was
extracted, which gives the best word-error rate from among all of the hypotheses in the lattice. The oracle
word-error rate for the training set lattices was 12.2%. We also performed trials with 1000-best lists for the
same training set, rather than lattices. The oracle score for the 1000-best lists was 16.7%.

To produce the word-lattices, each training utterance was processed by the baseline ASR system. In a naive
approach, we would simply train the baseline system (i.e., an acoustic model and language model) on the
entire training set, and then decode the training utterances with this system to produce lattices. We would then
use these lattices with the perceptron or GCLM training algorithms. Unfortunately, this approach is likely to
produce a set of training lattices that are very different from test lattices, in that they will have very low word-
error rates, given that the lattice for each utterance was produced by a model that was trained on that utter-
ance. To somewhat control for this, the training set was partitioned into 28 sets, and baseline Katz backoff
trigram models were built for each set by including only transcripts from the other 27 sets. Lattices for each
utterance were produced with an acoustic model that had been trained on the entire training set, but with a
language model that was trained on the 27 data portions that did not include the current utterance. Since lan-
guage models are generally far more prone to overtrain than standard acoustic models, this goes a long way
toward making the training conditions similar to testing conditions.

Our ASR system is based on the AT&T Switchboard system used in the RT03 Evaluations (see Ljolje et al.,
2003 for details). The evaluation system was originally designed as a real-time system. For these experiments,
we use the system at a slower speed in order to avoid search errors. The system uses a multi-pass strategy to
incorporate speaker adaptation as well as more complex language and acoustic models. In the first pass, the
system produces an initial hypothesis which is used for speaker normalization and adaptation. In the second
pass, lattices are generated using the normalized features and the adapted acoustic models. Both of these
passes use a trigram language model, trained on approximately 4 million words of transcribed telephone con-
versations. The scores in the lattices are then replaced by scores from a 6-gram language model, trained using
MAP estimation (Bacchiani et al., 2006), with the original 4 million words of in-domain data plus an addi-
tional 150 million words of out-of-domain text. Finally the lattices are rescored using more complex adapted
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acoustic models (typically pentaphone models instead of triphone models), and the final hypotheses are
obtained.

In order to evaluate the performance of discriminative language modeling as well as its interaction with
other components of the ASR system, we used three different configurations:

(1) A simple single-pass (or first pass) system. This configuration was used to measure the performance of
discriminative language modeling in isolation.

(2) A system that performs an additional rescoring pass which allows for better silence modeling and
replaces the trigram language model score with a 6-gram model. This configuration was used to see
the effects of lattice rescoring and more complex language models.

(3) The full multi-pass system, with a modified final pass that generates lattices instead of single hypotheses.
This configuration was used to evaluate the interaction of discriminative language modeling with acous-
tic model adaptation and feature normalization. The effect of using more complex acoustic models which
were not used during the training of the discriminative language models was also evaluated.

4.1. Perceptron results

The first trials using the perceptron algorithm look at a simple single-pass recognition system that forms the
basis of the AT&T Switchboard system. After each iteration over the training set, the averaged perceptron
model was evaluated against the held-out training data, and the model with the lowest word-error-rate was
chosen for evaluation on the test set. For each training scenario, we built 5 models, corresponding to 5 lattice
scaling factors a0, from 0.5 to 8.0. Each graph shows the baseline performance, which is without a perceptron
model; and performance of a perceptron built under our standard training scenario. The standard training
scenario is defined as

(1) training lattices produced by removing utterances from their own baseline LM training set;
(2) using the oracle best path as the gold standard;
(3) with trigram, bigram and unigram features;
(4) no n-best extraction from the word lattices.

Fig. 3 compares the standard scenario just presented with the same scenario, except that the lattices were
produced without removing utterances from their own baseline LM training set, i.e. number 1 above is
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Fig. 3. Leaving all utterances in the training set for the language model that produces the training lattice, versus removing utterances from
the training for the language model that produces their word-lattice. Word error rate on Switchboard 2002 eval set at various lattice scale
factors.
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Fig. 4. Using the reference transcription as the gold standard, versus the oracle best path through the lattice. Word error rate on
Switchboard 2002 eval set at various lattice scale factors.
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changed. From this plot, we can see several things. First, removing utterances from their own baseline LM
training set is necessary to get any improvement over the baseline results at all. This underlines the importance
of matching the testing and training conditions for this approach. Our standard approach works best with a
lattice scale of 4, which provides a 1.3% improvement over the baseline, 37.9% WER versus 39.2. All scales a0

from 1 to 8 are within 0.3% of this best result.
Fig. 4 compares the standard training scenario with the same scenario, except the reference transcription is

used as the gold standard instead of the oracle best path. At the best scaling factors, the difference is 0.4 per-
cent, but the reference trained model is much more sensitive to the scaling factor.

Fig. 5 shows the result of including fewer features in the perceptron model. Including all n-grams of order 3
or less is the best performer, but the gain is very small versus using just bigrams and unigrams. Unigrams and
bigrams both contribute a fair amount to performance, but the trigrams add very little over and above those.
The lower order models are less sensitive to the lattice scale factor.

Finally, Fig. 6 shows the result of performing n-best extraction on the training and testing lattices.10 With
n = 1000, the performance is essentially the same as with full lattices, and the performance degrades as fewer
candidates are included. The n-best extracted models are less sensitive to the lattice scale factor.

The AT&T Switchboard system performs a rescoring pass, which allows for better silence modeling and
replaces the trigram language model score with a 6-gram model. Table 1 gives the rt02 and rt03 results for
the ASR baselines and perceptron trained on lattices or 1000-best lists for both first-pass recognition and
the rescoring-pass. The magnitude of the gain in the rescoring pass is less than for the first pass, but the
0.5 and 0.7 percent improvements over the rescoring-pass baseline are also statistically significant
(p < 0.001), using the Matched Pair Sentence Segment test for WER included with SCTK (NIST, 2000).

4.2. Global conditional log-linear model results

We now describe results for global conditional log-linear models. There are three baselines which we com-
pare against. The first is the ASR baseline, with no reweighting from a discriminatively trained n-gram model.
The other two baselines are with perceptron-trained n-gram model re-weighting. The first of these is for a
pruned-lattice trained trigram model, which showed a reduction in word error rate (WER) of 1.3%, from
39.2% to 37.9% on rt02. The second is for a 1000-best list trained trigram model, which performed only mar-
ginally worse than the lattice-trained perceptron, at 38.0% on rt02.
10 The oracle word-error rates for the 50-best, 100-best and 1000-best training sets are 20.8, 19.7, and 16.7 percent, respectively.
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Table 1
Word-error rate results at convergence iteration for various trials, on both Switchboard 2002 test set (rt02), which was used as the dev set,
and Switchboard 2003 test set (rt03)

Trial Pass Iterations Features Dev(rt02) Test (rt03)

ASR Baseline First – – 39.2 38.2
Perceptron, Lattice First 2 1408572 37.9 36.9
Perceptron, 1000-best First 2 910322 38.0 37.2
ASR Baseline Rescore – – 37.1 36.4
Perceptron, Lattice Rescore 2 974159 36.6 35.7
Perceptron, 1000-best Rescore 3 884186 36.6 35.7
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4.2.1. Perceptron feature set

We use the perceptron-trained models as the starting point for our GCLM training algorithm: the feature
set given to the GCLM training algorithm is the feature set selected by the perceptron algorithm; the feature
weights are initialized to those of the averaged perceptron. Fig. 7 shows the performance of our three baselines



Fig. 7. Word error rate on the rt02 eval set versus training iterations for GCLM trials, contrasted with baseline recognizer performance
and perceptron performance. Points are at every 20 iterations. Each point (x,y) is the WER at the iteration with the best objective function
value in the interval (x�20,x].
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versus three trials of the GCLM training algorithm. In the first two trials, the training set consists of the
pruned lattices, and the feature set is from the perceptron algorithm trained on pruned lattices. There were
1.4 million features in this feature set. The first trial set the regularizer constant r =1, so that the algorithm
was optimizing raw conditional likelihood. The second trial is with the regularizer constant r = 0.5, which we
found empirically to be a good parameterization on the held-out set. As can be seen from these results, reg-
ularization is critical.

The third trial in this set uses the feature set from the perceptron algorithm trained on 1000-best lists, and
uses GCLM optimization on these on these same 1000-best lists. There were 0.9 million features in this feature
set. For this trial, we also used r = 0.5. As with the perceptron baselines, the n-best trial performs nearly iden-
tically with the pruned lattices, here also resulting in 37.4% WER. This may be useful for techniques that
would be more expensive to extend to lattices versus n-best lists (e.g. models with unbounded dependencies).

These trials demonstrate that the GCLM training algorithm can do a better job of estimating parameter
weights than the perceptron algorithm for the same feature set. As mentioned in the earlier section, feature
selection is a by-product of the perceptron algorithm, but the GCLM training algorithm uses a fixed set of
features. The next two trials looked at selecting feature sets other than those provided by the perceptron
algorithm.

4.2.2. Other feature sets

In order for the feature weights to be non-zero in this approach, they must be observed in the training set.
The number of unigram, bigram and trigram features with non-zero observations in the training set lattices is
43.65 million, or roughly 30 times the size of the perceptron feature set. Many of these features occur only
rarely with very low conditional probabilities, and hence cannot meaningfully impact system performance.
We pruned this feature set to include all unigrams and bigrams, but only those trigrams with an expected
count of greater than 0.01 in the training set. That is, to be included, a trigram must occur in a set of paths,
the sum of the conditional probabilities of which must be greater than our threshold h = 0.01. This threshold
resulted in a feature set of roughly 12 million features, nearly 10 times the size of the perceptron feature set.
For better comparability with that feature set, we set our thresholds higher, so that trigrams were pruned if
their expected count fell below h = 0.9, and bigrams were pruned if their expected count fell below h = 0.1. We
were concerned that this may leave out some of the features on the oracle paths, so we added back in all
bigram and trigram features that occurred on oracle paths, giving a feature set of 1.5 million features, roughly
the same size as the perceptron feature set.

Fig. 8 shows the results for three GCLM trials versus our ASR baseline and the perceptron algorithm base-
line trained on lattices. First, the result using the perceptron feature set provides us with a WER of 37.4%, as



Fig. 8. Word error rate on the rt02 eval set versus training iterations for GCLM trials, contrasted with baseline recognizer performance
and perceptron performance. Points are at every 20 iterations. Each point (x,y) is the WER at the iteration with the best objective function
value in the interval (x�20,x].
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previously shown. The WER at convergence for the big feature set (12 million features) is 37.6%; the WER at
convergence for the smaller feature set (1.5 million features) is 37.5%. While both of these other feature sets
converge to performance close to that using the perceptron features, the number of iterations over the training
data that are required to reach that level of performance are many more than for the perceptron-initialized
feature set.

Tables 2 and 3 show the word-error rate at the best performing iteration on the development set for the
various trials, on both rt02 and rt03, for first-pass and rescoring pass, respectively. All of the first-pass GCLM
trials are significantly better than the perceptron performance, using the Matched Pair Sentence Segment test
for WER included with SCTK (NIST, 2000). On rt02, the N-best and perceptron initialized GCLM trials were
significantly better than the lattice perceptron at p < 0.001; the other two GCLM trials were significantly
Table 2
First-pass word-error rate results at best-dev-set-performance iteration for various trials, on both Switchboard 2002 test set (rt02), which
was used as the dev set, and Switchboard 2003 test set (rt03)

Trial Pass Features Iterations rt02 rt03

ASR Baseline First – – 39.2 38.2
Perceptron, Lattice First 1408572 2 37.9 36.9
Perceptron, 1000-best First 910322 2 38.0 37.2
GCLM, Lattice, Percep feats First 1408572 220 37.3 36.5
GCLM Exact, Lattice, Percep feats First 1408572 144 37.4 36.7
GCLM, 1000-best, Percep feats First 910322 140 37.4 36.7
GCLM Exact, 1000-best, Percep feats First 910322 220 37.4 36.6
GCLM, Lattice, h = 0.01 First 11816862 2530 37.5 36.6
GCLM, Lattice, h = 0.9 First 1540260 1432 37.5 36.5

Table 3
Rescoring-pass word-error rate results at best-dev-set-performance iteration for various trials, on both Switchboard 2002 test set (rt02),
which was used as the dev set, and Switchboard 2003 test set (rt03)

Trial Pass Features Iterations rt02 rt03

ASR Baseline Rescore – – 37.1 36.4
Perceptron, Lattice Rescore 974159 2 36.6 35.7
Perceptron, 1000-best Rescore 884186 3 36.6 35.7
GCLM, Lattice, Percep feats Rescore 974159 132 36.2 35.5
GCLM Exact, Lattice, Percep feats Rescore 974159 177 36.2 35.5
GCLM, 1000-best, Percep feats Rescore 884186 113 36.3 35.4
GCLM Exact, 1000-best, Percep feats Rescore 884186 100 36.3 35.4
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better than the lattice perceptron at p < 0.01. On rt03, the N-best GCLM trial was significantly better than the
lattice perceptron at p < 0.002; the other three GCLM trials were significantly better than the lattice percep-
tron at p < 0.001.

Table 4 presents several trials investigating other methods for selecting features for use in GCLM modeling.
The first method is inspired by the fact that the perceptron algorithm only selects features from the best scor-
ing and oracle (minimum error rate) paths. One can do something similar without perceptron training, by
restricting features to those occurring in the baseline model 1-best or oracle paths. The first two rows of Table
4 demonstrate this to be a viable approach, reaching competitive levels of performance in both first pass and
rescoring trials. In the absence of parameter weight starting values provided by the perceptron algorithm,
however, it takes many more iterations to reach convergence.

The second two rows of Table 4 show the result of restricting the features in the perceptron algorithm to
those with an expected count in the corpus greater than a threshold h = 0.2. This leads to a feature set of
roughly the same size as the trials in the first two rows of the table. Two iterations of the perceptron algorithm
provides a starting point to GCLM training with this feature set, which converges to the same performance
point as the trial in row 2 of the table, but takes about one third of the iterations to do so.

Finally, we measured the time of a single iteration over the training data on a single machine for the per-
ceptron algorithm, the GCLM training algorithm using the approximation to the gradient of a0, and the
GCLM training algorithm using an exact gradient of a0. Table 5 shows these times in hours. Because of
the frequent update of the weights in the model, the perceptron algorithm is more expensive than the GCLM
training algorithm for a single iteration. Further, the GCLM training algorithm is parallelizable, so that most
of the work of an iteration can be shared among multiple processors. Our most common training setup for the
GCLM training algorithm was parallelized between 20 processors, using the approximation to the gradient. In
that setup, using the 1.4 M feature set, one iteration of the perceptron algorithm took the same amount of real
time as approximately 80 iterations of the GCLM training algorithm.

4.3. Results with a multi-pass ASR system

Finally we present results using the multi-pass AT&T Switchboard system used in the RT03 Evaluations
(see Ljolje et al., 2003 for details). For simplicity we apply the discriminative language model only at the final
pass. Note that results may be improved further by applying the discriminative language model at earlier,
adaptation passes in recognition. In fact, application of the perceptron method at each decoding step was
shown to improve the performance in Bacchiani et al. (2004).

The word-error rate performance of the system on the rt03 test set is presented in Table 6. Recall that the
discriminative language models were estimated using lattices generated by triphone acoustic models. When the
final pass uses triphone acoustic models an improvement of 0.9% in WER is observed. This is a 3.1% relative
Table 4
Word-error rate results at best-dev-set-performance iteration for various trials with smaller feature sets, on both Switchboard 2002 test set
(rt02), which was used as the dev set, and Switchboard 2003 test set (rt03)

Trial Pass Features Iterations rt02 rt03

GCLM, Oracle & Bestpath feats First 384090 467 37.4 36.6
GCLM, Oracle & Bestpath feats Rescore 357616 367 36.3 35.5
Perceptron, Lattice, pruned h = 0.2 Rescore 334156 2 36.6 35.8
GCLM, Lattice, Percep feats pruned h = 0.2 Rescore 334156 123 36.3 35.6

Table 5
Time (in hours) for one iteration on a single Intel Xeon 2.4Ghz processor with 4GB RAM

Features Percep GCLM

Approx Exact

Lattice, Percep Feats (1.4 M) 7.10 1.69 3.61
N-best, Percep Feats (0.9 M) 3.40 0.96 1.40
Lattice, h = 0.01 (12 M) – 2.24 4.75



Table 6
Multi-pass word-error rate results using the discriminative language model with triphone and pentaphone acoustic models for the final
pass on the Switchboard 2003 test set (rt03)

Trial Pass Triphone AM Pentaphone AM

Baseline Final 28.9 27.4
Perceptron Final 28.4 27.1
GCLM, Percep feats Final 28.0 26.9
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error rate reduction, compared to the 4.6% relative error rate reduction for first-pass recognition. This result
demonstrates that the speaker normalization and acoustic model adaptation techniques utilized do not create
a significant mismatch. On the other hand, using pentaphone acoustic models we get a 0.5% absolute improve-
ment in WER (1.8% relative reduction), suggesting that the mismatch between the training conditions using
triphone acoustic models and the testing conditions using pentaphone acoustic models result in reduced but
still significant improvements.

As in Bacchiani et al. (2004), reductions in WER are retained after unsupervised acoustic model adaptation.
These results indicate that it is not necessary to perform unsupervised acoustic model adaptation when pro-
ducing training lattices for this approach, even if such techniques are used at test time.

5. Conclusion

We have contrasted two approaches to discriminative language model estimation on a difficult large vocab-
ulary task, showing that they can indeed scale effectively to handle this size of a problem. Both algorithms
have their benefits. The perceptron algorithm selects a relatively small subset of the total feature set, and
requires just a couple of passes over the training data. The GCLM training algorithm does a better job of
parameter estimation for the same feature set, and is parallelizable, so that each pass over the training set
can require just a fraction of the real time of the perceptron algorithm.

The best scenario from among those that we investigated was a combination of both approaches, with the
output of the perceptron algorithm taken as the starting point for GCLM estimation.

We have shown that reducing the mismatch between the training lattices and the test lattices is crucial. A
leave-one-partition-out strategy was utilized while estimating the language models used in generating the
training lattices. This strategy is hard to employ while estimating the acoustic models and our results suggest
that this is not as necessary, at least for the case of acoustic model adaptation.

As a final point, note that the methods we describe do not replace an existing language model, but rather
complement it. The existing language model has the benefit that it can be trained on a large amount of text
that does not have corresponding speech data, as was done for the 6-gram language model employed in the
rescoring pass of the system described here. It has the disadvantage of not being a discriminative model. The
new language model is trained on the speech transcriptions, meaning that it has less training data, but that it
has the advantage of discriminative training – and in particular, the advantage of being able to learn negative
evidence in the form of negative weights on n-grams which are rarely or never seen in natural language text
(e.g., ‘‘the of’’), but are produced too frequently by the recognizer. The methods we describe combine the two
language models, making use of their complementary strengths.
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