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ABSTRACT ) ] the features we investigated, followed by empirical results un-
We present a reranking approach to sentence-like unit (SWer g variety of conditions.

boundary detection, one of the EARS metadata extraction tasks. > BACKGROUND

Techniques for generating relatively small n-best lists withln this section. we .provide background on the baseline SU

high oracle accuracy are presented. For each candidate, fe Stection modéls and our reranking approach

tures are derived from a range of information sources, in: . '

cluding the output of a number of parsers. Our approac .hl. MDEftaskts aEdfbaseilmet mOIdI\?SE' EARS in th ¢

yields significant improvements over the best performing Sysfeciﬁti@lsgtrioiz SSSrdZtr:cctiLcj)rna S eec;lnre air d:arlecteionr:oself—

tem from the NIST RT-04F community evaluatfon . . o -tlon, Spee pair ( '

interruption point (IP) detection, and filler detection. Evalua-

1. INTRODUCTION

. h v lity i . tion is conducted using human reference transcriptions (REF)
Automatic speech recognition (ASR) system quality is typi-yng ASR output, the latter to assess the impact of recognition

cally measured in terms of the accuracy of the word S€QUENCErors. Two corpora with different speaking styles were used
However, automated speech processing applications may be-g ARs: conversational telephone speech (CTS) and broad-
efit from (or sometimes even require) system output that ig;qt news. Performance is generally measured as the num-
richer than an undelimited sequence of recognized words. Ffo ot errors (insertion, deletion, and substitution when sub-

example, sentence breaks and disfluency annotations are Ciline of the events is considered) per reference events (e.g, SU
ical fpr Ieg'b'!'ty [1], as vyell as fpr downstrgam Processing ., ndaries, speech repairs), which we will refer to as NIST
algorithms with complexity that is polynomial in the length error. We also report F-measure accufdoy SU detection.

of the string, such as parsing. One aspect of the DARPA .. o\ briefly summarize the ICSI/SRI/UW MDE sys-
EARS prograrfi was to focus on structural metadata extraC+g 151 \which is the baseline for the current research. The

tion (MDE) [2], including a range of disfluency annotations MDE tasks can be seen as classification tasks that determine

and sentence-like unit (SU) boundary detection. hether an interword boundary is an event boundary (e.g., SU

This paper specifically addresses the task of SU bounc}gr IP) or not. To detect metadata events, multiple knowledge

ary detection. Previous approaches to this task have us%%urces are utilized, including prosodic and textual informa-

finite-state sequence modeling approaches, including Hiddeg,, 1 icaly, at each interword boundary, prosodic features
Markov Models (HMM) [3] and Conditional Random Fields are extracted to reflect pause length, duration of words and

(ER'?] [4]. Wh"? the.;,eha_tpproilchesk hgve yieIdeI(Ij gor?cillresglt ones, pitch contours, and energy contours. These prosodic
the characteristics of this task make it especially challenging, o o5 are modeled by a decision tree classifier, which gen-

folr Mﬁ rkov moderlls: Averag(]jeﬁLrJ] length for conErs§t|onalerateS a posterior probability of an event given the feature set
te ephone speec ."'E afroun b er:jce, mos_t_o the “”ﬁ; thaﬁssociated with a boundary. Textual cues are captured by con-
previous states will be for non-boundary positions, providinge, 5| information of words, their corresponding classes, or

relatively impoverished state sequence information. Thus, 'ﬂigher-level syntactic information

[4], @ Maximum Entropy (MaxEnt) model that did not use Three different Markov modeling approaches are base-
state sequence information, was able to outperform an HM'\ﬂnes for the MDE tasks: HMM. MaxEnt. and CRE. In all

by including additional rich information. Our approach is to cases, there is a hidden evei)(at each word, represent-

rely upon a baseline model [S] to produce n-best lists of pOS|'n'g the segmentation decision following the word. There are
S

sible segmentations, and extract disambiguating features OVEIS o features ) corresponding to the observed input, e.g

en@ire candidate segmentation.s, with no Mark?"’ assumptiqqhe words and prosodic features. The HMM is a second order
This paper presents an effective n-best candidate eXtraCt'cmarkov model. the CRE model first order. and the MaxEnt
algorithm, along with a detailed investigation of the utility of model order 0 'Both the MaxEnt and CRE ’models are trained
a ralngi of features_for 'mpro"'?‘é? SbU bko unda:jy detictlgr&. d using conditional likelihood objectives; whereas, the HMM

n the next section we provide background on the &s trained as a generative model. The CRF model has been

tection task, baseline models, and the gengral rerapking aBRown to outperform the MaxEnt model, which outperforms
proach. We then present our n-best extraction algorithm anﬁ{]e HMM [4]. Baseline results will be presented in section 4.

Lhttp:/iwww.nist.gov/speech/tests/rt/rt2004/fall/ 3If ¢, s, andr are the number of correct, system, and reference SU bound-
2http://www.darpa.millipto/programs/ears/ aries, respectively, then Be/(s + 7).




Baseline Percent Percent of
Posteriorz Accurate | Word Boundaries
x > 0.95 97.9 8.2 Mo e MR Wi P Wi Wesp Wi
xr < 0.05 99.4 77.0
0.05 < = < 0.95 78.1 14.8 Fig. 1. Picture of the n-best extraction approach
Table 1. Accuracy of labels produced by baseline model versur so better than the 1-best. As a result, other methods for
posterior probability on dev2 set. generating the n-best lists were investigated.
2.2. Maximum Entropy reranking The baseline classifier marks as segmentation points all

We used the MaxEnt reranker documented in [6], which opPOsitions with a posterior probability of 0.5 or higher. Table
timizes parameter weights with respect to a regularized cont shows the accuracy of the baseline model when the pos-
ditional likelihood objective. The approach maximizes theterior probability of a segmentation boundary is either very
conditional probability magsiven to those candidates in the high or very low, versus somewhere in the middle. For very
n-best list that have the highest accufack Gaussian regu- high or very low posterior word positions, the baseline model
larizer is used to control for overtraining, and the regularizefS nearly always correct; whereas, other positions have much
constant is set empirically. Formally, let the training data conlower accuracy for the classifier. This suggests an approach
sist of NV examples, le¥; be the set of candidates for example Where high and low posterior points are fixed to the classes

i, and letY; be the set of maximum accuracy candidates foProvided by the baseline classifier.
examplei, i.e., We used a two-stage candidate generation approach. In
. the first stage, we fixed a subset of the word boundaries as
Y; = {y € Y; | ACC(y) = argmay, y,ACC(y")} (1)  segmentation points. The sub-sequences between fixed word
Then the parameter estimation minimizes the regularized ne§oundaries we refer to &iglds Inthe second stage, we gener-
ative conditional log probability ated n-best lists of candidate segmentations for the fields. To
N establish the fields, we first chose all word boundaries with a
NLLR(6) = — Z]og Z Py | Y;) | + R(6) (2) posterior probabilityr>p for some parametew. Since we
im1 vet; inteqd to use parsers over candidate segments for feature ex-
where Ry | Y;) is the conditional likelihood of given the traction, itis |mp0rtant.that the Ionggst candldaFe segmeqts be
normalized distribution ovel;, and R(6) is the Gaussian of tractable lengths, given _polynom|al_compl_eX|ty of parsing.
regularizer. By normalizing the candidate probabilities ovel 1€NCe, We also parameterized a maximum field lekgtRor
the n-best lists, this approach uses a global normalization akfff!ds of length greater thak, the highest posterior internal
to that in CRFs. It is the flexibility in extracting features over WOrd boundary was fixed as a segmentation point. This pro-

the entire sequence that differentiates the current approa&tSS i continued until no fields have length greater than

from the baseline CRF model. See [6] for more details. In the second stage, candidate segmentations are created
for each field. This is also done using two parameters. The
3. RERANKING FOR SU DETECTION J highest posterior internal points are hypothesized as possi-
In this section, we present n-best list generation and featutsle boundaries, although no internal point with posterior less
extraction for reranking. thangq is allowed to be hypothesized as a segmentation point.
3.1. n-best candidate extraction With j internal hypothesized points, there & candidate

SU detection is done over conversation sides (see section 4 fa?g;ngntatlons. Flgure 1 pliesenr:s a sgnple_pmturel of how this
the data description), which are far lengthier sequences thgfpndidate generation works, where three internal segmenta-
those in NLP tasks that are usually approached in a reranfion Points are placed between the field boundaries, providing
ing paradigm, such as parsing. For the data processed § candidate segmentations. For the trials presented in this

this paper, the average length of a conversation side is moR&aPer, we chose to generate lists for all sections under the pa-
rameterizatiorp = 0.95,k =50,57 = 10, andg = 0.05.

than 500 words, with the maximum over 1000. Since everyl_h_ olds ith an B : 974
word boundary is a potential segmentation point, the num- Is ylelds lists with an F-measure oracle accuracy ot 97.4 on

ber of possible segmentations over the conversation side Ege reference transcribed development set (dev2).
exponential in the length of the string. A brute force ap-3.2. Feature extraction
proach to generating the 1000 best segmentations over theBeatures are extracted from each candidate segmentation, for
conversation-side sequences, i.e., choosing the 1000 higheste in the reranker. We will assign letters to sets of features,
scoring segmentations based on the baseline posterior prohahich will allow us to present empirical results comparing
bilities, yields an oracle F-measure accuracy of just a percemterformance on the development set using subsets of features.

re— — - ) o A Basgline model §corethe baseling posterior score associ—'

e probability is conditioned on the n-best list, i.e., each candidate’s,ie  ith the candidate segmentation. Recall that the candi-

probability is normalized relative to the n-best list.

5Since the n-best list is not guaranteed to contain the truth, there may tféates are defined by sonjdield-internal possik_)le Segmeﬂ_ta'
multiple maximum accuracy candidates in the list. tion points. Each word boundary has a posterior probahility




of being a segmentation point (calculated using the forwardeonversion from parses output by the Charniak parser. This
backward algorithm), antl—x of not being a segmentation conversion has been used in the past to generate CDG-derived
point. The score of each candidate is the sum of the log podeatures for language modeling [12]. Both the CDG and Mini-
terior probabilities for its label at each possible boundary. par parses represent dependencies between words and their
b. Candidate statistics:features derived from characteristics governors. In addition, the CDG parser represents constraints
of the candidate. These included: the number of segments n required dependents, e.g., verb subcategorization require-
the candidate; the maximum (and minimum) segment lengtiments, as well as a variety of lexical features such as agree-
within the candidate; and the average segment length. Waent and case. We refer readers to the citations for details on
also extracted segment-length n-grams (up to 4), where eathese parsers and representations.
segment is assigned a bin based on the number of words in the Charniak parser features: each segment in the candidate
segment, and sequences of bins were extracted as featuresis assigned features extracted from the Charniak parser out-
c. N-gram score: each candidate received a trigram scoreput. These include a language model score by the Charniak
using a model trained with segmentation points as tokens, gparser for each segment. Nonterminal labels taken from the 1-
1500 hours of Fisher data rapidly transcribed by WordWave best tree returned by the Charniak parser, e.g., S, NP, FRAG,
d. Baseline model disfluency featureswhether the baseline €tc., were extracted as features, along with an indication of
model labeled the word just before, just after, or both justvhether they were at the root of the tree or not. In addition, a
before and just after a segment boundary as a speech repaigecond feature combined each root or non-root non-terminal
e. ToBl-label features: annotation of a reduced set of ToBI- label with the number of children of the node.
based labels. Automatic decision-tree based classifiers weke CDG-derived dependency featuresgenerated using the
built from a subset of Switchboard that was manually andependency feature template tool described below.
notated with ToBI labels [7]. Certain labels occurred infre-I- Other dependency features:generated using the depen-
quently and were collapsed to obtain three types of break irflency feature template tool described below, based on Mini-
dices — fluent (low), disfluent (disf) and major phrase boundPar and Charniak-derived dependency ttees
aries (high). The posterior probability of these three break Features were extracted from Minipar, Charniak-derived,
indices was calculated from acoustic cues of prosody such @d CDG dependency trees using a feature extraction tool and
pitch, energy and duration associated with words, syllable2n associated feature template language. The template lan-
rhymes and phones (see [8] for a detailed description of thguage allows for features relating sentence position, lexical
features). Note, these raw acoustic cues are already presd@ntity, part of speech tags, governor relationship, governor
in our baseline system. In addition, however, we also explictyPes, and other features generated by the particular parser.
ity combined a quantized version of posterior probabilitiesSome of the features used were:
with the size/type of the largest syntactic constituent that be-® Whether wordX' was the root of the dependency tree
gins/ends at a word, and the type/distance of the dependency® The count or percentage of governor relationships of t¥pe
The constituents were taken from the Charniak parser output® The part-of-speech’ and lexical featureg’ of root word X
e Whether the root was the first or last word in the sentence
Other features were extracted from segments, regardless ! .

. . . . e The number of times word with part-of-speecly” and
of the candidate within which they occur. Candlldates then governor relationshig was in the sentence.
sum the feature values from the segments of which they arey The number of times that a word with part-of-spedtiyov-
composed. The benefit of extracting them over segments rather erned a word with part-of-speed.
than candidates is that, while the number of candidates grows 4. EMPIRICAL RESULTS

exponenj[ially with the number of internal p_oirj;tsthe NUM- " The paseline MDE system was trained on roughly 400,000
ber_of unique ;egments only grows quadratlcalliy. Hence, W'tovords of MDE annotated Switchboard transcripts. Three ad-
10 internal pqp?s, there 'are 100 not 1000 parsing tasks.. ditional sections of largely Fisher (with some Switchboard)
f. Segment initial and final n-grams: for all segments in 4.~ \vere RTO4E SimpleMDE annotated by the LDC: a 75,000
the candidate, unigrams and bigrams both sentence initial angl, 4 development set (dev1): a second 35,000 word develop-
final. Also, POS-tag unitags and bitags in the same positiong, ¢ set (dev2); and a 35,000 word evaluation set (eval). In
9. Speaker change and backchannefeatures derived from o 4gition, we made use of treebanks of these three sections
speaker change events from the two-sided conversations. T'(!.%CZOOSElS). For all three of these sets, both reference
features were based on the distance of segment bo“”darit‘?énscripts and 1-best ASRranscripts were available.

from both speaker changes and common backchannel words T5pie 2 shows results on the dev? development set, un-
on both sides of the conversation. der both reference and ASR 1-best transcript conditions. The

We extracted features using three kinds of parsers: (1) thgyo baseline results demonstrate that the combination of the
Charniak parser [9, 6] trained on the Switchboard treebank; _ _ _
6To derive a dependency tree directly from Charniak parses, we used stan-

(2) the Constralnt-Dependency Grammar (CDG) parser [10](iard head-percolation techniques to define governor dependencies.

and (3) the Minipar dependency tree parser [11]-_ Note that "The ASR system output came from [13] and achieved WER of 11.7% on
the CDG parses were generated for these experiments viadév2 and 14.9% on eval.




Reference ASR Reference ASR
System Feats| NIST || Feats| NIST System Feats| NIST || Feats| NIST
Baseline CRF 25.9 35.8 Baseline CRF 26.5 37.2
Baseline HMM+MaxEnt| a 26.1 a 35.1 Baseline HMM+MaxEnt a 27.0 a 36.7
Reranked a-e 259 ace| 346 Reranked, dev1 training a-j 249 || a,c-i 36.4
Reranked a-h 245 || a,c-h| 33.8 Reranked, dev1+2 training a-j 244 || a,c-i 35.6
Reranked a 232 || acd | 335 Table 3. NIST error results of baseline and reranker trained on devl
Reranked a 230 acj | 339 and on devl+dev2 applied to the eval set, both reference and ASR
Table 2. NIST error results with different feature sets on dev2, both1-pest transcripts
reference and ASR 1-best transcripts. 6. REFERENCES
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