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Abstract

This paper investigates discriminative language modeling in a scenario with two kinds of observed errors: errors in
ASR transcription and errors in utterance classification. We train joint language and class models either independently
or simultaneously, under various parameter update conditions. On a large vocabulary customer service call-classifica-
tion application, we show that simultaneous optimization of class, n-gram, and class/n-gram feature weights results in a
significant WER reduction over a model using just n-gram features, while additionally significantly outperforming a
deployed baseline in classification error rate. A range of parameter estimation approaches, based on either the percep-
tron algorithm or conditional log-linear models, for various feature sets are presented and evaluated. The resulting
models are encoded as weighted finite-state automata, and are used by intersecting the model with word lattices.
! 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Discriminative modeling techniques, such as the
perceptron algorithm and global conditional log-

linear models, have been shown recently to provide
significant word-error rate (WER) reductions over
baseline system performance on Switchboard,
using just n-gram count features (Roark et al.,
2004a,b). Reductions in WER are critical for
applications making use of automatic speech rec-
ognition (ASR), but the key objective of a partic-
ular application may be different. For example,
the effectiveness of spoken document retrieval
can be impacted by the accuracy of the underly-
ing ASR system, but the system objective will
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ultimately be some sort of precision of retrieval
metric. Classification of unrestricted customer
utterances into a number of classes for interaction
with an automated dialog system is another appli-
cation that relies upon accurate ASR (Gorin et al.,
1997), but the success of the application is often
evaluated with respect to class-error rate (CER)
not WER. If the ASR system is being optimized
for use in such an application, discriminative train-
ing scenarios such as those cited above should be
focused upon the system objective rather than
WER.

Often, however, multiple objectives will be
important to the application. For example, both
WER and CER will be important to the applica-
tion when named entities or other information is
extracted from the ASR output, in addition to
classification. Generally speaking, however, classi-
fiers are optimized independently of the ASR mod-
els, either for the purpose of just returning the
utterance class (e.g. Haffner et al., 2003), or for
feeding a class or topic back into the language
model (e.g. Wu and Khudanpur, 2002). ASR mod-
els are likewise rarely trained for classification
(though see Riccardi and Gorin, 1998). Reduced
WER, however, can improve classification, and
improved classification can reduce WER, i.e. a
joint model serves both objectives, and perfor-
mance may be improved for both objectives
through simultaneous optimization of the joint
model parameters.

A discriminative language model of the sort
described in (Roark et al., 2004a,b), with the
objective of reduced error in transcription, can
improve CER by virtue of providing better tran-
scriptions to the classifier. Alternatively, these dis-
criminative approaches can be straightforwardly
extended to perform utterance classification in
addition to lattice re-weighting, by adding possible
class labels to the transcriptions and including
class label features in the model. In this paper,
we perform a range of experiments investigating
the benefit of simultaneous optimization of param-
eters for both WER and CER reductions. We
demonstrate that simultaneously optimizing
parameter weights for both n-gram and class
features provides significant reductions in both
WER and CER.

Several papers have been published in recent
years on discriminative techniques. For example,
Stolcke et al. (2000) used an ‘‘anti-LM’’, estimated
from weighted N-best hypotheses of a baseline
ASR system, with a negative weight in combina-
tion with the baseline language model, and Kuo
et al. (2002) used the generalized probabilistic des-
cent algorithm to train relatively small language
models which attempt to minimize string error rate
on the DARPA Communicator task. Discrimina-
tive methods used for call classification include
the generalized probabilistic descent algorithm
(Kuo and Lee, 2003), corrective training (Cox,
2003), rational function growth transform (Chelba
et al., 2003), rational kernels (Cortes et al., 2004),
and large margin classifiers (Haffner, this issue).

The rest of the paper is structured as follows.
First, we present the general approach we use for
discriminative language modeling, following
Roark et al. (2004a,b). Next, we describe how we
add utterance class annotations to the training
and extend the feature set to perform classification
in addition to lattice re-weighting. Under this gen-
eral approach, several possible parameter update
conditions are described. In addition to using lin-
ear models, as previously reported in (Saraçlar
and Roark, 2005), we explore the use of global
conditional log-linear models. Finally, we perform
an experimental evaluation of the range of
approaches that have been presented, on a large-
vocabulary customer service application.

2. Methods

Our approach is based on linear models that
can be represented as weighted finite-state auto-
mata. The weights are estimated from training
data in order to jointly minimize errors in tran-
scription and classification.

2.1. Linear models for n-gram language modeling

We follow the linear modeling framework out-
lined in (Collins, 2002, 2004), and used for WER
reduction in ASR in (Roark et al., 2004a,b). The
approach allows us to learn a mapping from inputs
x 2 X to outputs y 2 Y. In the current case, X is a
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set of utterances, and Y is a set of possible tran-
scriptions and utterance classifications. The ap-
proach assumes:

• Training examples (xi,yi) for i = 1, . . .,N, where
yi is the reference annotation of xi.

• A function GEN which enumerates a set of can-
didates GEN(x) for an input x, e.g. word-lattice
paths with hypothesized classifications.

• A representation U mapping each ðx; yÞ 2
X#Y to a feature vector Uðx; yÞ 2 Rd .

• A parameter vector !a 2 Rd .

The components GEN, U and !a define a mapping
from an input x to an output F(x) through

F ðxÞ ¼ argmax
y2GENðxÞ

Uðx; yÞ % !a ð1Þ

where Uðx; yÞ % !a is the inner product
P

sasUsðx; yÞ.
The learning task is to set the parameter values !a
using the training examples as evidence. Note that
in ASR, weights are negative log probabilities,
which changes argmax to argmin in these
algorithms.

There are many approaches to setting the
parameters, !a, given training examples (xi,yi).
For WER reduction, Roark et al. (2004a) used
the perceptron algorithm (Collins, 2002), and
Roark et al. (2004b) used global conditional log-
linear models, which are related to conditional
random fields (Lafferty et al., 2001), with the same
feature sets as Roark et al. (2004a). For this paper,
we first use the perceptron algorithm, shown in
Fig. 1. We use cross-validation on a held-out set
to determine the number of iterations T; and at
test time, the averaged perceptron parameter val-
ues were used to control for overtraining. See
Roark et al. (2004a) for more details on this

approach. The second approach we investigate is
an extension of the global conditional log-linear
models used in (Roark et al., 2004b).

2.2. Feature definitions and implementation

The feature set U investigated in the current
paper includes:

(1) the scaled cost given by the baseline ASR
system, i.e. &k log PðA;W Þ;

(2) unigram, bigram and trigram counts in the
utterance, e.g. C(w1,w2,w3);

(3) the utterance class cl; and
(4) class-specific unigram and bigram counts,

e.g. C(cl,w1,w2).

Feature sets (1) and (2) are the same as those
used in (Roark et al., 2004a,b), and their parame-
ter weights can be efficiently represented in a deter-
ministic weighted finite-state automaton (WFA),
through the use of failure transitions (Allauzen
et al., 2003a). See Roark et al. (2004a) for details
in this efficient encoding, which is presented sche-
matically in Fig. 2. Briefly, every state in the
automaton represents an n-gram history h, e.g.
wi&2wi&1, and there are transitions leaving the state
for every word wi such that the feature hwi has a
weight. There is also a failure transition leaving
the state, labeled with some reserved symbol /,
which can only be traversed if the next symbol in
the input does not label any transition leaving
the state. This failure transition points to the

Fig. 1. A variant of the perceptron algorithm.

w  wi-2     i-1
w   wi-1     i
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Fig. 2. Representation of a trigram model with failure
transitions.
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backoff state h 0, i.e. the n-gram history h minus its
initial word. Let N denote this n-gram WFA.

The class-specific feature sets ((3) and (4) above)
are encoded in a second, class-specific WFA,
which we will denote C. The initial state of C has
k arcs, each labeled with one of the k class labels
and weighted with the parameter weight for that
class. The destination state of each of these k arcs
is the start state of a class-specific n-gram automa-
ton, of the same topology as N.

The output of our system will be a class label
and a transcription. However the weighted word
latticeL output by the baseline recognizer only in-
cludes transcriptions, as does the class-indepen-
dent model N. We can emit a class label for
every path from both of these automata by
appending a new start state to the beginning of
them. The new start state has k arcs, each labeled
with one of the possible set of class labels and each
has the original start state as destination. In such a
way, any word string produced by the original
WFA is preceded by any of the possible class la-
bels. Let Lc and Nc denote L and N with class
labels appended, respectively. Fig. 3 shows the
start of such a trigram model Nc, and Fig. 4
shows the start of the class-specific n-gram model
C.

The structure of the model in Fig. 4 is exactly
the structure that would be used for a classifier
based on generative n-gram models. In such an ap-
proach, a separate n-gram model would be esti-
mated for each class, and the initial class-labeled
arc would have a prior probability of the class,
P(C). The class bCðW Þ is then selected for word

string W that maximizes the joint probability of
class and word string W, i.e.

bCðW Þ ¼ argmax
C

PðC;W Þ

¼ argmax
C

PðCÞPðW jCÞ ð2Þ

See Chelba et al. (2003) for a comparison of differ-
ent parameter estimation techniques for classifica-
tion based on n-grams.

Note that it is also possible to view this setup as
a transduction from words to classes. Instead of
using the output labels of a finite-state transducer,
in our implementation we chose to use the initial
labels to indicate the classes. We made this choice
due to the fact that there is only one class label per
utterance, as opposed to a sequence of labels (e.g.
parts-of-speech). A single utterance initial symbol
requires relatively little modification of the pre-
existing approaches.

Using the joint model, the one-best class/tran-
script sequence is found by extracting the best path
from kLc 'Nc ' C, where ' denotes intersection
as usual and k is the scale given to the baseline
ASR score. In contrast, most call routing systems
first extract a one-best word transcript which is
then used for classification. In our notation this
corresponds to first extracting w ¼ bestpathðLÞ
and finding bestpathðwc 'Nc ' CÞ, where w is the
best word sequence and wc is w with class labels
appended. Examples of systems that use more than
just the single best word hypothesis can be found
in (Chelba et al., 2003; Cortes et al., 2004; Tur
et al., 2004).

<c> <s>

c1

c2

...

ck

<s>w1w1

ε

φ

w1

φ
w w1 2

w2

w1

w2

Fig. 3. Start of a trigram model with classes appended.
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2.3. Parameter estimation

2.3.1. Perceptron algorithm
Perceptron training consists of extracting the

best scoring annotation z for the current utterance
x using the current models, and updating the
parameter value for each feature with the differ-
ence between the gold standard feature count
and the feature count of z. Which annotation to
choose as the gold standard is an important ques-
tion: in (Roark et al., 2004a) it was shown for n-
gram modeling that using the minimum error rate
annotation in the word-lattice as the gold standard
outperforms using the reference annotation itself.
This ability to choose the gold standard leads to
two distinct ways of thinking about controlling
the parameter estimation to meet a particular
objective: either through feature selection or
through gold standard selection. We can control
parameter updates to suit a particular objective
by choosing the relevant features; or by choosing
the gold standard annotation so that only features
related to that objective are updated.

Here we have two main objectives: having an
accurate transcription and choosing the correct
class for each utterance. The parameters can be
independently or simultaneously optimized to
achieve either one or both of the objectives. Let
Gd be the correct class and minimum error rate
word string for the utterance x, and 1B the one-
best annotation from kLc 'Nc ' C for the current
models. Let c(Gd) and w(Gd) denote the class label
and word transcription, respectively, of the anno-
tation Gd; and let c(1B) and w(1B) be defined sim-
ilarly for the one-best output 1B. If the sole
objective of training is classification error reduc-
tion, we can effectively ignore errors in transcrip-
tion by setting our gold standard for parameter
update to y = c(Gd)w(1B). Since w(y) = w(1B),
the difference in feature values related to the base-
line ASR score and class-independent n-gram
counts will be zero, i.e. those parameters will not
be updated, and will remain with value zero. Up-
date will only occur if the class label c(1B) is incor-
rect. Hence this effectively selects the features of
the model to be from feature sets (3) and (4) from

<c>
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<s>
c2

<s>

..

.

ck

ε
φ

<s>w1w1

<s>w1
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ε
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ε

φ
<s>w1

w1

w1

φ
w w1 2

w2
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Fig. 4. Start of class-specific trigram model.
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Section 2.2, such that all bigram counts come only
from the best scoring transcription. Similarly, if
the sole objective is word-error rate, we can ignore
the class label by setting y = c(1B)w(Gd), which
limits features to feature sets (1), (2) and (4), with
class labels coming only from what is best scoring.
Simultaneous optimization of the parameters oc-
curs if we let y = Gd. A variation can be obtained
by optimizing the parameters for feature sets (1)
and (2) for word error rate while optimizing the
parameters for feature sets (3) and (4) for classifi-
cation, i.e. n-gram counts come from only the best
scoring hypotheses for features in set (4).

Note that in some cases one utterance may be
annotated with more than one class. Similar to
the uniform case of the algorithm described in
(Crammer and Singer, 2003), we distribute the
parameter updates uniformly over the classes.
For example, if there are two classes labeled for
an utterance, half of the reduction in cost of the
class label feature goes to one class, and half goes
to the other.

2.3.2. Global conditional log-linear models
Conditional log-linear models have been ap-

plied to NLP tasks such as parsing (Ratnaparkhi
et al., 1994; Johnson et al., 1999), and tagging or
segmentation tasks (Lafferty et al., 2001; Sha and
Pereira, 2003; McCallum and Li, 2003; Pinto
et al., 2003), as well as for n-gram language mod-
eling for ASR (Roark et al., 2004b). These models
use the parameters !a to define a conditional distri-
bution over the members of GEN(x) for a given
input x:

p!aðyjxÞ ¼
1

Zðx; !aÞ
exp Uðx; yÞ % !að Þ

where Zðx; !aÞ ¼
P

y2GENðxÞ expðUðx; yÞ % !aÞ is a nor-
malization constant that depends on x and !a. Note
that the distribution is conditioned on the whole
input, and not on the history. This differentiates
global conditional log-linear models from history-
conditioned exponential models whose para-
meters are determined using maximum entropy
estimation.

Given these definitions, the log-likelihood of the
training data under parameters !a is

LLð!aÞ ¼
XN

i¼1

log p!aðyijxiÞ

¼
XN

i¼1

Uðxi; yiÞ % !a& log Zðxi; !aÞ½ ) ð3Þ

Following Johnson et al. (1999) and Lafferty et al.
(2001), we use a zero-mean Gaussian prior on the
parameters resulting in the regularized objective
function:

LLRð!aÞ ¼
XN

i¼1

Uðxi; yiÞ % !a& log Zðxi; !aÞ½ ) & k!ak2

2r2

ð4Þ

The value r dictates the relative influence of the
log-likelihood term vs. the prior, and is typically
estimated using held-out data. The optimal param-
eters under this criterion are !a* ¼ argmax!aLLRð!aÞ.

As in (Roark et al., 2004b), we use a limited
memory variable metric method (Benson and
Moré, 2002) to optimize LLR. There is a general
implementation of this method in the Tao/PETSc
software libraries (Balay et al., 2002; Benson
et al., 2002). This technique has been shown to
be very effective in a variety of NLP tasks (Malouf,
2002; Wallach, 2002). The main interface between
the optimizer and the training data is a procedure
which takes a parameter vector !a as input, and in
turn returns LLRð!aÞ as well as the gradient of LLR

at !a. The derivative of the objective function with
respect to a parameter as at parameter values !a
is

oLLR

oas
¼

XN

i¼1

Usðxi; yiÞ &
X

y2GENðxiÞ
p!aðyjxiÞUsðxi; yÞ

" #

& as
r2

ð5Þ

Note that LLRð!aÞ is a convex function, so that
there is a globally optimal solution and the optimi-
zation method will find it. The use of the Gaussian
prior term k!ak2=2r2 in the objective function has
been found to be useful in several NLP settings.
It effectively ensures that there is a large penalty
for parameter values in the model becoming too
large—as such, it tends to control over-training.
Having multiple r2 values for different feature sets
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can yield further improvements (Chen and Rosen-
feld, 1999). The choice of LLR as an objective
function can be justified as maximum a posteriori
(MAP) training within a Bayesian approach. An
alternative justification comes through a connec-
tion to support vector machines and other large
margin approaches. SVM-based approaches use
an optimization criterion that is closely related to
LLR—see Collins (2004) for more discussion.

One final implementation note, having to do
with counting class-specific n-grams from the
output of model composition. The GRM Library
from AT&T (Allauzen et al., 2004, 2003b) contains
all of the needed functionality to calculate the gra-
dients for n-gram features, as detailed in (Roark
et al., 2004b). To calculate the expected counts
of n-gram sequences given a distribution repre-
sented by a word lattice, the function grmcount
in the GRM Library composes the word lattice
with a transducer of the structure shown in
Fig. 5(a). The resulting transducer is then pro-
jected onto output labels, and epsilons are re-
moved, yielding the correct expected counts for
the n-gram sequences. If the initial label of each
path in the lattice is a class label, we can produce
class-specific n-gram counts by using a count
transducer of the form in Fig. 5(b). This trans-
ducer consumes, and preserves, the initial class
label, before performing the same function as the
standard count transducer. With this small modifi-
cation to the counting algorithm in the GRM
library, we were able to efficiently calculate the
gradients for this new set of features.

As in the perceptron case, this approach can be
extended for the cases where one utterance is la-
beled with more than one class, i.e. when c(Gd) is

a set with more than one member. In this case,
the probability of y = c(y)w(y) given x is

p!aðyjxÞ ¼
P

c2cðyÞ expðUðx; c;wðyÞÞ % !aÞ
Zðx; !aÞ

Denoting yi = ciwi the regularized objective func-
tion becomes

LLRð!aÞ ¼
XN

i¼1

log
X

c2ci

expðUðxi; c;wiÞ % !aÞ½ )

"

& log Zðxi; !aÞ

#

& k!ak2

2r2

whose derivative with respect to a parameter as at
parameter values !a is given by

oLLR

oas
¼

XN

i¼1

P
c2ci expðUðxi; c;wiÞ % !aÞUsðxi; c;wiÞP

c2ci exp Uðxi; c;wiÞ % !að Þ

"

&
X

y2GENðxiÞ
p!aðyjxiÞUsðxi; cðyÞ;wðyÞÞ

#

& as
r2

As opposed to the perceptron case, there is an ex-
plicit objective function that is optimized. In addi-
tion to the joint optimization presented above, it is
possible to explicitly optimize the parameters to
achieve better utterance classification or word
accuracy. Instead of using log p!aðyjxÞ ¼ log p!a
ðc;wjxÞ in the objective function, one could use
log p!aðwjxÞ ¼ log

P
cp!aðc;wjxÞ if word accuracy is

the only goal or log p!aðcjxÞ ¼ log
P

wp!aðc;wjxÞ if
utterance classification is the only goal. It is also
possible to approximate the summations by the
best class or the best word string, respectively.

1

b:ε /1
a: ε /1

2/1
x:x/1

b:ε /1
a: ε /1

0 1
c:c/1

b:ε /1
a: ε /1

2/1
x:x/1

b:ε /1
a: ε /1

(a) (b)

Fig. 5. Count transducers for (a) standard n-gram models; and (b) class-specific n-grams.
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3. Experimental results

3.1. Experimental setup

We present experimental results on one of the
AT&T VoiceTone" large vocabulary customer
service applications (Gilbert et al., in press). The
training set consists of 29,561 utterances (361,353
words), of which 5909 were used as held-out data.
The test set consists of 5537 sentences (46,243
words). There are 97 utterance classes, referred
to as calltypes. Each utterance in the corpus is
labeled with one or more calltypes, e.g.
Request(Call_Transfer) or Request
(Order_Status). On average there are 1.1 call-
types per utterance. There are at most four labels
per utterance.

We evaluate performance with two metrics, cor-
responding to our two objectives. First is word
accuracy (WAcc), which is standardly defined as
100-WER. Second is top-class error rate (TCErr),
which is the percentage of utterances for which the
highest scoring calltype is not among the labeled
calltypes for that utterance. We followed two
broad training scenarios with respect to the call-
types. In the first, we selected a single calltype
per training utterance from among the set, always
selecting that calltype which occurs least fre-
quently in the training corpus. Selecting the call-
type which occurs most frequently would make
more sense for minimizing the TCErr. However,
for most cases the secondary labels are very com-
mon and easy to learn labels such as !yes" or !no".
Our aim was to cover more labels and provide
more training data for the less common labels.
We refer to this training condition as ‘‘single-
label’’. The second training condition leaves all
calltypes, and parameter updates allocate evidence
uniformly over the classes (similar to the uniform
case of the algorithm described in (Crammer and
Singer, 2003)).

3.2. Baseline results

The baseline deployed classifier (see Gupta
et al., in press) for this application was trained
using Boostexter (Schapire and Singer, 2000),
using either reference transcriptions or one-best

transcriptions from ASR. We trained a second
baseline classifier with the perceptron algorithm
by also restricting our input ‘‘lattice’’ to a single
string. Classification is the sole objective here,
since the word transcript is already fixed, so here
we set the gold standard annotation to
y = c(Gd)w(1B). Table 1 shows some baseline
results on this test data. For each classifier, we
present three results. The first result is trained
and tested on the one-best transcription of the
baseline ASR system, which has a word accuracy
of 78.4%. The second result is obtained with clas-
sifiers trained and tested on the one-best after
intersecting the word-lattice L output from the
baseline ASR with the perceptron-trained n-gram
model N, which improves word accuracy to
80.1%. The final baseline shows classification error
when trained and tested on the reference transcrip-
tion, as a lower-bound.

From this we can see that the perceptron classi-
fier outperforms the Boostexter classifier by
around 1% when trained on reference, but by more
when trained on ASR output. This comparison is
included primarily to demonstrate that the classi-
fier that results from the baseline training algo-
rithm is performing at a level comparable to
other common approaches.

3.3. Experiments using linear models

Table 2 shows the results of training perceptron
models on word-lattices under various parameter
update conditions. Trials 1 and 2 show the result

Table 1
Top-class error rate (TCErr) baselines using either the deployed
classifier trained using Boostexter or a perceptron-trained
classifier for single-label and multi-label training scenarios,
given either (1) the one-best from the lattice L output from
ASR; (2) the one-best after intersecting L with the corrective
n-gram model N; or (3) the reference transcription

Input word string
(training and test)

WAcc Boostexter Perceptron

Multi-
label
TCErr

Single-
label
TCErr

Multi-label
TCErr

BestpathðLÞ 78.4 24.5 24.3 23.2
BestpathðL 'NÞ 80.1 23.7 23.9 22.2
Reference 100.0 19.4 20.0 18.5
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of setting the gold standard annotation to
y = c(Gd)w(1B), i.e. ignoring errors in transcrip-
tion, similar to the baseline trials but without
restricting the input to a single string. Trial 1 takes
as input the baseline ASR lattice with all classes
appended to the beginning of the lattice. In com-
parison with the baseline trial restricting input to
the one-best from ASR, we see that we get nearly
a 1% reduction in TCErr in the multi-label sce-
nario by combining the models before performing
one-best extraction. The word accuracy is not sig-
nificantly different from the baseline. Trial 2 pro-
vides as input the word-lattice after intersection
with the perceptron-trained n-gram model N.
Again, we observe a TCErr improvement (0.6%
in the multi-label scenario), with a small non-sig-
nificant change in word accuracy, this time slightly
better than the baseline. Overall, this demonstrates
the importance of training and applying these
models to word-lattices rather than word-strings.

Trials 3–5 show the flip-side of trials 1 and 2, in
that the gold standard annotation is chosen as
y = c(1B)w(Gd), i.e. calltype errors are ignored
and only differences in word transcription are con-
sidered when updating parameters. Trial 3 pro-
vides an upper bound on the improvement to
word accuracy that could be had from these call-
type labels, since it appends the true reference class
to each word lattice. Trial 4 demonstrates that, if
instead of appending the true class, we instead ap-
pend the predicted class, using the model trained
in trial 1, we achieve no significant improvement
in word accuracy. Note that the model used to
provide the annotation was trained in a multi-label
scenario, so this is the only scenario possible for
trials 4 and 5. In trial 5, rather than restricting

the label to a single predicted class, we simply take
as input the word lattice intersected with the clas-
sifier from trial 1, which is analogous to trial 2
when the lattice was composed with the n-gram
model N. Here we find that the word error rate
is improved almost to the level of the upper bound
set in trial 3. However, the classification perfor-
mance degrades significantly under this scenario.
Finally, trial 6 performs simultaneous optimiza-
tion of the class-independent and class-specific fea-
tures by leaving the gold standard annotation as
Gd. Here we achieve significant word accuracy
improvements over the perceptron n-gram model
performance, as well as statistically indistinguish-
able TCErr performance from trial 2. For the mul-
ti-label case the word accuracy improvement (from
80.1% to 80.5%) is significant at p < 0.005 using
the Matched Pair Sentence Segment Word Error
significance test provided by SCTK (NIST,
2000). TCErr reductions from 23.2 to 21.8 or
below are significant at p < 0.05.

We also experimented with optimizing the
parameters for feature sets (1) and (2) for word
error rate while optimizing the parameters for
features sets (3) and (4) for classification. Table 3
shows the results for these trials, compared with
using the same oracle for both feature sets.
This approach, as expected, traded some word
accuracy improvements for small classification
improvements.

3.4. Experiments using global conditional
log-linear models

Finally, we present preliminary results obtained
by using global conditional log-linear models

Table 2
Word accuracy (WAcc) and top-class error rate (TCErr) for single-label and multi-label training scenarios under various parameter
update conditions and with varying training input

Trial no. Training and testing Gold standard Single-label Multi-label

Classes appended To lattice Class label Transcript TCErr WAcc TCErr WAcc

1 All classes L c(Gd) w(1B) 23.6 78.3 22.3 78.3
2 All classes L 'N c(Gd) w(1B) 23.2 80.2 21.6 80.3
3 True class L c(1B) w(Gd) 0.0 80.5 0.0 80.6
4 Trial 1 class L c(1B) w(Gd) – – 22.3 80.2
5 – Lc ' C c(1B) w(Gd) – – 35.5 80.5
6 All classes L c(Gd) w(Gd) 22.9 80.5 21.8 80.5
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focusing on the multi-label scenario. Table 4
summarizes these results. First, we took the
perceptron-trained word n-gram model N and
re-estimated its parameters to optimize the regu-
larized log-likelihood of the words. This improves
the word accuracy to 80.9%. However, training a
perceptron based classifier on the one-best word
string we obtained a TCErr of 22.3%, no improve-
ment over using the perceptron-trained word
n-gram model N. Further re-estimation of the
classifier parameters to optimize the regularized
log-likelihood of the classes given the one-best
word string resulted in 21.2% TCErr. Next, we
replicated trial 3 of Table 2. When true class labels
are given it is possible to get 81.7% word accuracy
by optimizing the regularized log-likelihood of the
words given the true class labels. Simultaneous
joint optimization yields improved results when
using global conditional log-linear models.

Unfortunately, training is very slow in such an
approach. The required summations are taken
over the product space of possible classes and the
word lattices. In fact, the full summation is not
feasible for our task, so we had to prune the joint
hypothesis space. Even so, the optimization pro-
cess took about one CPU year before it was termi-

nated. The relative speed of training recommends
using either the perceptron algorithm or indepen-
dent optimization of the parameter sets, even if
this results in somewhat sub-optimal parameter-
izations. Of course, the speed of convergence is a
function of the initial parameter values and the
selected features. There might be better initializa-
tions that could make simultaneous optimization
preferable.

4. Discussion

This paper has investigated the effect of joint
discriminative modeling on two objectives, classifi-
cation and transcription error. On the classifica-
tion side, there are three potential factors leading
to the best performance: (1) improvements in word
accuracy provided by the model; and (2) delaying
the extraction of the 1-best hypothesis, i.e. using
word-lattice input rather than strings; and (3)
simultaneously optimizing parameters for classifi-
cation and transcription error reduction. In the
multi-label scenario, the first two factors provide
1% reduction independently and 1.6% total reduc-
tion when combined. Simultaneous optimization
does not provide further improvement over the
two factors.

For word accuracy, a similar breakdown can be
investigated, though with different conclusions. In
this case, adding a predicted class to the word-lat-
tice does not significantly improve word accuracy
over the simple n-gram model. Providing the distri-
bution over classes from the classifier, i.e. delaying
the decision about which class is correct, provides
a 0.4% absolute reduction in word error rate,
though at the expense of a very large degradation
of TCErr. Finally, simultaneous optimization of
the parameters gives us as much improvement in
word accuracy as we could get knowing the true
class of the utterance, without penalizing TCErr.
In summary, simultaneous optimization allows us
to reach the best performance in both objectives
with a single joint model.

Using global conditional log-linear models
further improved the performance. Indepen-
dently optimizing the parameters yielded a 0.5%
improvement in word accuracy and a 0.8%

Table 3
Word accuracy (WAcc) and top-class error rate (TCErr) for
single-label and multi-label training scenarios with the same
and different gold standards for different feature sets

Gold standard for feature
sets

Single-label Multi-label

(1) and (2) (3) and (4) TCErr WAcc TCErr WAcc

c(Gd)w(Gd) c(Gd)w(Gd) 22.9 80.5 21.8 80.5
c(1B)w(Gd) c(Gd)w(1B) 22.5 80.2 21.5 80.3

Table 4
Word accuracy (WAcc) and top-class error rate (TCErr) for the
multi-label training scenario using the perceptron algorithm
and global conditional log-linear (GCL) parameter estimation
techniques

Parameter estimation Multi-label

TCErr WAcc

Perceptron algorithm 21.8 80.5
GCL, sequential optimization 21.2 80.9
GCL, conditioned on true class 0.0 81.7
GCL, simultaneous optimization 21.3 81.3
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improvement in classification error over the per-
ceptron algorithm.

For future directions, there are interesting issues
when considering other annotations beyond utter-
ance class. Coarser annotations, such as conversa-
tion topic in Switchboard, could be annotated,
although because of topic drift and off-topic or
topic-generic utterances, both the predictability
and utility of these annotations may be less than
in the current case. In addition, finer annotations,
e.g. part-of-speech (POS) tags, bring up some diffi-
cult issues, particularly having to do with identify-
ing an appropriate gold-standard, since manual
annotation of a given training set would be expen-
sive. In both of these cases, word accuracy is likely
to be the primary objective of modeling, and from
the current results, it seems clear that simultaneous
joint modeling is a promising approach.
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Users Manual. Technical Report ANL/MCS-TM-242-Revi-
sion 1.4, Argonne National Laboratory.

Chelba, C., Mahajan, M., Acero, A., 2003. Speech utterance
classification. In: Proceedings of the International Confer-
ence on Acoustics, Speech, and Signal Processing (ICASSP).

Chen, S.F., Rosenfeld, R., 1999. A gaussian prior for smooth-
ing maximum entropy models. Tech. Rep. CMU-CS-99-
108, Carnegie Mellon University.

Collins, M., 2002. Discriminative training methods for hidden
Markov models: theory and experiments with perceptron
algorithms. In: Proceedings of the Conference on Empirical
Methods inNaturalLanguage Processing (EMNLP), pp. 1–8.

Collins, M., 2004. Parameter estimation for statistical parsing
models: theory and practice of distribution-free methods.
In: Bunt, H., Carroll, J., Satta, G. (Eds.), New Develop-
ments in Parsing Technology. Kluwer.

Cortes, C., Haffner, P., Mohri, M., 2004. Rational kernels:
theory and algorithms. J. Mach. Learning Res. (JMLR) 5,
1035–1062.

Cox, S., 2003. Discriminative techniques in call routing. In:
Proceedings of the International Conference on Acoustics,
Speech, and Signal Processing (ICASSP).

Crammer, K., Singer, Y., 2003. A family of additive online
algorithms for category ranking. J. Mach. Learning Res. 3,
1025–1058.

Gilbert, M., Wilpon, J.G., Stern, B., Fabbrizio, G.D., in press.
Virtual agents for contact center automation. IEEE Speech
Process. Mag.

Gorin, A.L., Riccardi, G., Wright, J.H., 1997. How may I help
you? Speech Commun. 23, 113–127.

Gupta, N., Tur, G., Hakkani-Tür, D., Bangalore, S., Riccardi,
G., Rahim, M., in press. The AT&T spoken language
understanding system. IEEE Trans. Speech Audio Process.

Haffner, P., this issue. Scaling large margin classifiers for
spoken language understanding. Speech Commun.,
doi:10.1016/j.specom.2005.06.008.

Haffner, P., Tur, G., Wright, J., 2003. Optimizing SVMs for
complex call classification. In: Proceedings of the Interna-
tional Conference on Acoustics, Speech, and Signal Pro-
cessing (ICASSP).

Johnson, M., Geman, S., Canon, S., Chi, Z., Riezler, S., 1999.
Estimators for stochastic ‘‘unification-based’’ grammars. In:
Proceedings of the 37th Annual Meeting of the Association
for Computational Linguistics (ACL), pp. 535–541.

Kuo, H., Lee, C., 2003. Discriminative training of natural
language call routers. IEEE Trans. Speech Audio Process.
11 (1), 24–35.

Kuo, H.-K.J., Fosler-Lussier, E., Jiang, H., Lee, C.-H., 2002.
Discriminative training of language models for speech
recognition. In: Proceedings of the International Conference
on Acoustics, Speech, and Signal Processing (ICASSP),
Orlando, Florida.

Lafferty, J., McCallum, A., Pereira, F., 2001. Conditional
random fields: probabilistic models for segmenting and
labeling sequence data. In: Proceedings of the 18th Inter-
national Conference on Machine Learning, pp. 282–289.

Malouf, R., 2002. A comparison of algorithms for maximum
entropy parameter estimation. In: Proceedings of the Sixth
Conference on Natural Language Learning (CoNLL), pp.
49–55.

McCallum, A., Li, W., 2003. Early results for named entity
recognition with conditional random fields, feature
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M. Saraçlar, B. Roark / Speech Communication 48 (2006) 276–287 287

http://www.nist.gov/speech/tools

	Utterance classification with discriminative language modeling
	Introduction
	Methods
	Linear models for n-gram language modeling
	Feature definitions and implementation
	Parameter estimation
	Perceptron algorithm
	Global conditional log-linear models


	Experimental results
	Experimental setup
	Baseline results
	Experiments using linear models
	Experiments using global conditional log-linear models

	Discussion
	Acknowledgment
	References


