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Abstract—This paper focuses on integrating linguistically moti-
vated and statistically derived information into language modeling.
We use discriminative language models (DLMs) as a complemen-
tary approach to the conventional -gram language models to ben-
efit from discriminatively trained parameter estimates for over-
lapping features. In our DLM approach, relevant information is
encoded as features. Feature weights are discriminatively trained
using training examples and used to re-rank the -best hypotheses
of the baseline automatic speech recognition (ASR) system. In ad-
dition to presenting a more complete picture of previously pro-
posed feature sets that extract implicit information available at
lexical and sub-lexical levels using both linguistic and statistical
approaches, this paper attempts to incorporate semantic informa-
tion in the form of topic sensitive features. We explore linguistic
features to incorporate complex morphological and syntactic lan-
guage characteristics of Turkish, an agglutinative language with
rich morphology, into language modeling. We also apply DLMs to
our sub-lexical-based ASR system where the vocabulary is com-
posed of sub-lexical units. Obtaining implicit linguistic informa-
tion from sub-lexical hypotheses is not as straightforward as word
hypotheses, so we use statistical methods to derive useful infor-
mation from sub-lexical units. DLMs with linguistic and statis-
tical features yield significant, 0.8%–1.1% absolute, improvements
over our baseline word-based and sub-word-based ASR systems.
The explored features can be easily extended to DLM for other
languages.

Index Terms—Discriminative training, language modeling, mor-
phologically rich languages, speech recognition.
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I. INTRODUCTION

A Statistical language model assigns a probability distribu-
tion over all possible word strings in a language. The most

common language modeling approach in state-of-the-art ASR
technology is -gram modeling, due to model simplicity and
strong recognition performance. In -gram models, the proba-
bility of a word string is approximated with the product
of conditional word probabilities, conditioned on pre-
vious words. These probabilities are estimated using a large text
corpus with maximum likelihood estimation (MLE).

Discriminative training of language models has been recently
introduced to obtain improved parameter estimates for language
models (see Section II). The advantage of discriminative param-
eter estimation to MLE is that discriminative training takes neg-
ative examples into account as well as the positive examples
and therefore results in a better discrimination between alter-
native classes. Positive examples are the correct transcriptions
and negative examples are erroneous candidate transcriptions.
DLM parameters are trained by optimizing an objective function
that is directly related to the system performance, word error
rate (WER) in ASR systems. Estimation of the DLM parame-
ters is relatively straightforward for linear models. In addition to
the improved parameter estimates with discriminative training,
another advantage of this DLM approach to the conventional

-gram language model is that it is a featured-based approach.
Consequently, it allows for easy integration of many relevant
knowledge sources, such as morphology, syntax and semantics,
into language modeling.

In this paper, we explore DLMs in the context of Turkish
Large Vocabulary Continuous Speech Recognition (LVCSR).
Turkish is a particularly good test case for this sort of approach.
As an agglutinative language with rich morphology, straight-
forwardly applied -gram models suffer from very serious
out-of-vocabulary (OOV) rates (about 8% for 50 K, 2% for
200 K, and 1% for 500 K vocabularies). Sub-lexical-based ASR
systems, where the vocabulary is composed of sub-lexical units,
have been proposed for agglutinative languages, e.g., Turkish,
Finnish, Estonian, Hungarian to handle the OOV problem
caused by moderate size (50 K) word vocabularies and non-ro-
bust language model estimates caused by huge (500 K) word
vocabularies. The state-of-the-art Turkish LVCSR is based
on automatically obtained sub-lexical units, called “morphs.”
Having a rich morphology makes Turkish interesting for DLM
research since implicit morphological constraints seem likely
to be useful as DLM features. However, deriving and exploiting
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such information from sequences of sub-word units, automat-
ically learned from the data in an unsupervised manner, is a
challenge.

In our approach, DLMs are applied as a complementary
approach to the generative -gram language models, in either
the word-based or morph-based systems. Following prior
approaches, we first explore basic -grams of both words and
morphs as DLM features. We then explore novel feature sets
that extract implicit information available at lexical and sub-lex-
ical levels using linguistic and statistical approaches. Linguistic
features are investigated in the word-based ASR system to
integrate complex morphological and syntactic language char-
acteristics of Turkish into language modeling. The linguistic
information is extracted from the word hypothesis sentences
with the help of morphological and dependency parsers.
Obtaining linguistic information from morph hypotheses,
however, is not as straightforward as word hypotheses, since
the linguistic tools can not be directly applied to sub-word
units. Therefore we use statistical approaches to derive useful
implicit information from morph hypotheses. DLMs with these
linguistic and statistical features yield significant improvements
over our baseline word-based and morph-based ASR systems.

The paper is organized as follows. Previous related work is
presented in Section II. We explain a general framework for
DLMs in Section III. We present novel linguistically and sta-
tistically motivated feature sets in Section IV and give the ex-
perimental results in Section V. Discussion and conclusions are
given in Section VI

II. PREVIOUS WORK

-gram language models utilize word probabilities condi-
tioned on only the previous words in calculating the proba-
bility of the word strings. Language models have been proposed
that try to include deeper language characteristics than these
local collocations, e.g., morphology, syntax, and semantics. A
way of integrating relevant information into language models is
to represent words or sentences as a bundle of arbitrary features
and to build language models based on these features either with
generative or discriminative approaches.

Factored language models [3] generalize word -grams by
representing words as a set of factors (features). Conditional
exponential language models, i.e., maximum entropy (ME) lan-
guage models [4], utilize features, which are functions of the
predicted word and its history, to estimate word -gram prob-
abilities. Within this ME paradigm, various feature sets were
explored, including: trigger features, to adapt the model ex-
pectations to the topic of discourse [4]; semantic dependencies
and syntactic structure for ASR [5]; and semantic analysis for
spoken dialogue systems [6]. A joint morphological-lexical lan-
guage model which is also based on ME modeling was proposed
in [7] for morphologically complex Arabic language. The con-
ditional structure in ME language models is exchanged for a
global, sentence-level structure using whole sentence exponen-
tial language models [8].

DLMs have been demonstrated to consistently outperform
generative modeling approaches, partly due to improved pa-
rameter estimates with discriminative training and partly due to
the ease with which many overlapping features can be included

into the same model. Linear models have been successfully ap-
plied to discriminative language modeling for speech recogni-
tion [9]–[12] and utterance classification [13]. In DLMs based
on linear models, model parameters are used to define a cost,

, on the word sequence which also includes the likeli-
hood from the baseline recognizer, :

(1)

Here represents sentence level features and ’s are the
parameters associated with the features. ’s can be learned dis-
criminatively using the perceptron algorithm [9], [14] or using
methods based on maximizing the conditional log-likelihood
[9] or minimizing a discriminative loss function [12]. A com-
parison of different loss functions for DLMs is given in [15].
Within the DLM paradigm, utilizing only the word -grams as
features outperformed generative word -grams [9], and incor-
porating syntactic [11] and morphological [16] features yielded
additional improvements. Trigger-based features were also in-
corporated in order to use the conversation context as an ad-
ditional information source [17]. The discriminative model has
also been extended beyond the language model to jointly esti-
mate the acoustic state transitions, duration model and language
model, and thus learn the weights of the finite-state transducer
for a speech recognizer [18]. These methods are similar to ap-
proaches for reranking in the syntactic parsing literature [19],
[20], where instead of speech inputs being paired with word
string outputs (as in this paper), the problem has word string
inputs paired with syntactic parse tree outputs.

In addition to discriminative linear models, adjusting the pa-
rameters of -gram language models trained with MLE was
proposed to achieve minimum sentence error for discrimina-
tive training of language models [21], [22]. Minimum classi-
fication error framework was also used to discriminatively train
language and semantic classifier models for spoken utterance
classification task [23].

In this paper, we apply DLMs based on linear models to
Turkish which is an agglutinative language with rich mor-
phology. Agglutinative languages suffer from a large number
of OOV words in LVCSR. This problem has been mostly
handled by using meaningful segmentations of words, called
sub-lexical units, in -gram language modeling. In sub-lexical
language modeling, the recognition vocabulary is composed of
sub-lexical units instead of words. Sub-words in the vocabulary
are capable of covering most of the words of a language, thus
addressing the OOV problem and leading to a decrease in
WER. Consequently, various sub-lexical units obtained with
grammatical or unsupervised data-driven approaches have been
proposed for these languages. Previous studies for ASR in
Estonian [24], Finnish [25], Hungarian [26], and Turkish [27]
show that sub-lexical units improve the ASR accuracy over
words. A comparison among morphologically rich languages
Estonian, Finnish and Turkish, as well as Arabic, is given in
[28]. Previous work on Turkish language modeling focused on
sub-lexical -gram language models. Grammatically derived
sub-lexical units, e.g., morphemes [29], inflectional groups
[30], stem+endings [31] and their combinations [32], as well as
automatically derived sub-lexical units, called “morphs” [27],
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[33], have been used for Turkish ASR. Morphs are learned from
the data in an unsupervised manner by the Morfessor algorithm
[34] which uses the minimum description length principle, and
they have been shown to outperform words and grammatically
derived units in Turkish LVCSR [27]. Therefore, morphs are
selected as the sub-lexical units in this paper. The most compre-
hensive sub-lexical language modeling experiments on Turkish
LVCSR were reported in [27], [35].

III. DISCRIMINATIVE LANGUAGE MODELING

This section describes a general framework for DLMs based
on linear models. We will follow the definitions and notations
given in [9]. The main components of DLMs are as follows:

1) Training Examples: These are the input:output pairs
for . Inputs, , are the utterances

and outputs, , are the corresponding reference
transcriptions. Here is the set of all possible inputs and

is the set of all possible outputs.
2) : This function enumerates a finite set of candi-

dates for the inputs, , where .
function can be the lattice or the -best list output of the
baseline ASR system for the utterance .

3) : A -dimensional real-valued feature vector
. The representation defines the map-

ping from the pair to the feature vector .
4) : A vector of discriminatively learned feature parameters

)

A. Training Data Generation

Like many other supervised learning approaches, DLM re-
quires labeled input:output pairs as the training examples. Utter-
ances with the reference transcriptions, ,
are used in DLM training. The utterances are decoded with the
baseline ASR system to obtain the candidate outputs for the

function. Since speech data with transcriptions are
limited compared to the text data, DLM training data is gener-
ated by breaking the acoustic training data into folds, and rec-
ognizing the utterances in each fold using the baseline acoustic
model (trained on all of the utterances) and an -gram language
model trained on the other folds to alleviate over-training
of the language models. Acoustic model training data is not
typically controlled in the same manner since baseline acoustic
model training is more expensive and less prone to over-training
than -gram language model training [9].

B. Feature Representations

Discriminative language modeling is a feature-based se-
quence modeling approach. Therefore, each pair is
mapped to a -dimensional real-valued feature vector .
This feature vector is defined as a function of the acoustic input,

, and the candidate hypothesis, . Each element of the feature
vector, , corresponds to a different
feature. The zeroth element of the feature vector, ,1

is the contribution of the baseline ASR system to DLM and
defined as the “log-probability of in the lattice produced by
the baseline recognizer for utterance .” The basic approach

1� ��� �� � ���� ��� � �	��� ���� ����� where ���� ��� and
���� ����� are the baseline language model and acoustic model scores
respectively and � is the language model weight.

Fig. 1. Variant of the perceptron algorithm [9]. 
� represents the feature pa-
rameters after the �th pass on the 	th example.

for the other DLM features is to use word -grams in defining
features. The word -gram features are defined as the number
of times a particular -gram is seen in the candidate hypothesis.

C. Parameter Estimation

Each DLM feature has an associated parameter, i.e., for
. In this paper, a variant of the perceptron algorithm is

used for parameter estimation (shown in Fig. 1). This algorithm
is the same as the one given in [9]. The main idea in this algo-
rithm is to penalize features associated with the current 1-best
hypothesis, and to reward features associated with the gold-stan-
dard hypothesis (reference or lowest-WER hypothesis). It has
been found that the perceptron model trained with the reference
transcription as the gold-standard hypothesis is much more sen-
sitive to the value of the constant [9]. Therefore, we use the
lowest-WER hypothesis (oracle) as the gold-standard hypoth-
esis. Averaged parameters, , are used in decoding held-out
and test sets, since averaged parameters have been shown to out-
perform regular perceptron parameters in tagging tasks [14].

IV. DLM FEATURES

This section describes the feature sets used in Turkish DLMs.
Features are extracted from the -best list output of the training
utterances decoded by the word-based and morph-based ASR
systems. We investigate word -gram features on word hy-
potheses and morph -gram features on morph hypotheses as
the basic features. Morphological and syntactic information
is extracted from word hypothesis sentences using linguistic
tools. Implicit morpho-syntactic information is explored on
morph hypothesis sentences with statistical approaches and it is
used to define statistically motivated features. We also explore
statistical approaches on word hypotheses to derive the topic
of the utterances and topic sensitive features are incorporated
into DLMs. Beginning of sentence symbol, “ ,” and end of
sentence symbol, “ ,” are added to the hypothesis sentences
before feature extraction.

A. Basic -Gram Features

We use -grams as the basic DLM features as used in [9],
[10]. -gram features are defined as the number of times an

-gram is seen in the candidate hypothesis. Word unigram and
bigram feature templates are given in Table I where repre-
sents the th word in the hypothesis sentence. A Turkish phrase
with English glosses is given in Fig. 2. An example word bigram
feature is as follows:

number of times `` ” is seen in
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TABLE I
FEATURE SETS USED IN THE EXPERIMENTS

Fig. 2. Turkish phrase with morphological analysis. English glosses are given in parentheses. Endings and IGs are the groupings of the morphological tags in
surface and lexical forms, respectively.

Morph features are extracted from the -best hypotheses
obtained from the morph-based ASR system. In morph-based
ASR, the recognition vocabulary is composed the automatically
obtained sub-lexical units called morphs [34] and the genera-
tive language model is built with morph -grams. Therefore,
the recognition output is the most likely morph sequence cor-
responding to the input utterance. Note that concatenation of
morphs in ASR transcriptions can generate any sequence in-
cluding non-word items and correcting the ungrammatical items
has been shown to improve the recognition accuracy [36]. We
do not deal with this problem in this paper and to facilitate con-
version of morph sequences to word sequences after decoding, a
marker, “+”, is attached to the non-initial morphs. Fig. 2 shows
an example morph phrase. Morph -gram features are defined
in the same way as the word -gram features. Morph unigram
and bigram feature templates are given in Table I where rep-
resents the th morph in the morph hypothesis sentence.

B. Linguistically Motivated Features

This section focuses on extracting linguistic information
from word hypothesis sentences and utilizing this information
as DLM features.

1) Morphological Features: Morphology is an important in-
formation source for feature-based language models, especially

for morphologically rich languages [7], [16]. While introducing
the morphological features, we aim to turn the challenging mor-
phological structure of Turkish into a useful information source
in DLMs.

Morphological features will be explained using the example
Turkish word phrase and the corresponding morphological anal-
ysis given in Fig. 2. The decompositions are given in terms of
the roots followed by morphological tag sequences. Morpho-
logical tag sequences are separated by the symbol which
denotes the derivation boundaries. The morphological analysis
is obtained with Oflazer’s morphological analyzer [37]. The
complex morphological structure of Turkish can lead to sev-
eral different morphological analyses for the same word. We
found that in a vocabulary of 1.6 M morphologically decom-
posed words, each word can have on average 2.4 different mor-
phological analyses. The maximum number of morphological
analyses per word is 68. Therefore, the ambiguity in the words
with multiple morphological analyses was resolved using Sak
et al.’s perceptron-based morphological disambiguation tool for
Turkish [38].

We define the morphological features using roots, stem+end-
ings and inflectional groups (IGs). The morphological tag se-
quences separated by derivation boundaries are called the IGs.
All morphological features are defined in a similar manner as
the basic -gram features.
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Fig. 3. Example dependency analysis for syntactic.

In root -gram features, first the words in the hypothesis
sentences are represented only with their roots using the mor-
phological decompositions. Then the -gram features are gen-
erated in the same way as words, as if roots are words. The root
unigram and bigram feature templates are given in Table I where

represents the root of the th word.
In stem+ending -gram features, the stem is extracted from

the morphological decomposition and the remaining part of the
word is taken as the ending. If there is no ending in the word,
a special symbol is inserted to represent the empty ending. Hy-
pothesis sentences are converted to stem and ending sequences
and the -gram features are generated in the same way as words,
as if stems and endings are words. The stem+ending unigram
and bigram feature templates are given in Table I where and
represent the stem and the ending of the th word, respectively.

IG-based features are commonly used to handle the chal-
lenges introduced by the agglutinative nature in dependency
parsing and morphological disambiguation tasks of Turkish
[38]–[40]. In previous studies, it has been shown that the
dependency relations between words are determined by the
relations between the last IG of a word and any IGs of the
word on the right [40]. Moreover, IG-based features in a dis-
criminative framework gives the best accuracy for the Turkish
morphological disambiguation and PoS tagging tasks [38].
Therefore, IGs are also used in defining the morphological
features in this research. According to the IG definition a
word can be represented as a root and a sequence of IGs, i.e.,

. Here,
, and represent the root, th IG and the last IG

of the th word, respectively. Note that the morphological tags
following the root of the word until the derivation boundary
constitute the first IG of this word. The words in the hypoth-
esis sentences are represented as a sequence of IGs and the
IG-based -gram features are extracted from these sequences.
IG-based unigram features are extracted by treating IGs as
words. IG-based bigram features are obtained by using only
the IG pairs between the last IG of the previous word and all
the IGs of the current word. The main motivation in using
these pairs as the bigram features is to decrease the number
of features using the knowledge that pairs
are more likely to contain linguistic information, i.e., potential
dependency relations between words. IG-based unigram and
bigram feature templates are given in Table I.

2) Syntactic Features: Syntax is an important information
source for language modeling due to its role in sentence for-
mation. Syntactic information have been incorporated into con-
ventional generative language models to capture the long dis-

tance dependencies [41], [42]. Syntactic information has also
been used in feature-based reranking approaches [5], [8], [11].
The success of these approaches lead us to investigate syntactic
features for Turkish DLMs.

The syntactic features will be explained with the dependency
analysis given in Fig. 3. Eryiğit et al.’s dependency parser [40]
is used for the analysis. This is a classifier-based deterministic
parser utilizing IGs as the parsing units to find the dependency
links between words. The incoming and outgoing arrows in the
figure show the dependency relations between the head and the
dependent words with the type of the dependency. The words
with English glosses, PoS tags associated with the words are
also given in the example.

For the syntactic DLM features, we explore similar feature
definitions as [11]. Features are extracted from the dependency
analysis of the hypothesis sentences. Here, it is important to
note that hypothesis sentences contain recognition errors and the
parser generates the best possible dependency relation even for
incorrect hypotheses. We use PoS tag -grams and head-to-head
(H2H) dependency relations as the syntactic features. PoS tag
features are used in an effort to obtain class-based generaliza-
tions that may capture well-formedness tendencies. PoS tag un-
igram and bigram features are extracted in a manner similar to
that of words but treating PoS tags as words. PoS tag feature
templates are given in Table I where represents the PoS tag of
the th word. H2H dependency relations are used since presence
of a word or morpheme can depend on the presence of another
word or morpheme in the same sentence and this information is
represented in the dependency relations. H2H features are de-
fined using the dependency relations and lexical items or their
PoS tags. The examples for the H2H feature templates are given
in Table I. The dependency relations between th and th words
are denoted by where represents the type
of the dependency relation between the input pairs. For instance
in the feature notations given in Table I, H2H(tw) corresponds
to the feature defined in terms of the dependency relation be-
tween two words, , and the PoS tag of , denoted
by , and word , i.e., (INTENSIFIER [Conj] hizmetleri) for
the phrase “hizmetleri de,” from Fig. 3.

C. Statistically Derived Features

The advantage of the statistical morphs compared to their
grammatical counterparts is that they do not require linguistic
knowledge for segmenting words into sub-lexical units. As
a result morphs do not convey explicit linguistic information
like grammatical morphemes and obtaining linguistic informa-
tion from morph sequences is not obvious. In Section IV-B2,
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syntactic generalizations are considered with PoS tag and
H2H features. Since this information is not directly acquired
from morphs, we focus on exploring representative features of
morpho- syntactic information using data driven approaches.
Since Turkish is a prefix-free language, we make an analogy
between initial morphs and roots as well as between non-initial
morphs and suffixes in exploring morpho-syntactic features.

1) Clustering of Sub-Lexical Units: The feature set proposed
in this section aims to obtain syntactic information, similar to
PoS tags, directly from the morphs in the hypothesis sentences.
In order to obtain categories for morphs, like PoS tags of words,
morphs in the training corpora are automatically classified with
clustering algorithms. The category associated with a particular
morph is considered as the tag of that morph and utilized in
defining the morpho-syntactic features.

We apply two hierarchical clustering approaches. The first
one is Brown et al.’s algorithm [43] and the second one uses
minimum edit distance (MED) between strings as the similarity
function in bottom-up clustering.

Brown et al.’s algorithm was proposed for class-based
-gram language models. This algorithm is based on maxi-

mizing the average mutual information of adjacent classes (see
[43] for details). Utilizing -gram features in DLMs makes this
clustering an attractive approach for our research.

The motivation in the second clustering approach is to cap-
ture the syntactic similarity of morphs using their graphemic
similarities, since a non-initial morph can contain a grammat-
ical morpheme, a group of grammatical morphemes or pieces
of grammatical morphemes. Recall that we treat initial morphs
and roots in a similar manner. Therefore, this clustering is only
meaningful for non-initial morphs since graphemic similarity
of initial morphs does not reveal any linguistic information. So,
we only cluster the non-initial morphs. As for the initial morphs,
we try both assigning all of them into the same cluster and clus-
tering initial morphs with Brown et al.’s algorithm.

We define as the MED between two non-initial
morphs and . To make the distance independent of the
length of the non-initial morphs, we normalize the MED as

where is the length of . In
defining the similarity of the clusters, we prefer complete-link
similarity to obtain tight clusters. We choose the non-initial
morph pair yielding the highest distance for defining the simi-
larity of the clusters because this pair gives the most dissimilar
members of the clusters for the complete-link similarity func-
tion. The most similar clusters are merged in every iteration of
the bottom-up clustering. As a stopping criterion, we impose
an empirically determined threshold on the similarity of the
clusters in order to alleviate merging of clusters to generate a
huge cluster containing most of the non-initial morphs.

In Turkish, the same lexical form morpheme can correspond
to different surface form morphemes due to vowel harmony,
consonant harmony, and consonant deletion/insertion rules.
For instance, the lexical plural suffix “lAr”2 can correspond to
two different surface form suffixes, i.e., “ler” and “lar,” due to
the vowel harmony. Therefore, considering the phonological
variations in surface and lexical form morphemes in clustering

2“A” is the lexical symbol realized as /a/ or /e/ in surface form.

will help grouping morphs with similar syntactic functions into
the same cluster. In our application, we modify MED to softly
penalize the phonological variations in the surface and lexical
forms of the same suffix. For example, the substitution opera-
tion for the vowel-vowel and consonant-consonant pairs that are
more likely to occur due to the vowel harmony and consonant
harmony rules and the deletion and insertion operations for the
consonants that are more likely to occur during suffixation are
considered to introduce a cost of 0.5 instead of 1. Note that the
cost of all the operations are 1 in the MED calculation.

After clustering morphs with one of the hierarchical clus-
tering algorithms, the cluster of each morph is taken as the tag of
that morph. The -gram morph cluster features are extracted on
the morph tag sequences similar to PoS tag features of words.
The feature templates are given in Table I where represents
the cluster of the th morph, .

2) Long Distance Triggers: In addition to morph clusters,
we also propose long distance triggers as morpho-syntactic fea-
tures for DLMs with sub-lexical units. These features are mo-
tivated by the H2H dependency features in words. Considering
initial morphs as stems and non-initial morphs as suffixes, we
assume that the existence of a morph can trigger another morph
in the same sentence. The morphs in trigger pairs are believed
to co-occur for a syntactic function, like the syntactic dependen-
cies of words, and these pairs are used to define the long distance
morph trigger features.

Long distance morph trigger features are similar to the word
trigger features proposed in [4], [17]. Previously proposed ap-
proaches use the document history to find the word trigger fea-
tures. In our research we only consider sentence level trigger
pairs to capture the morpho-syntactic level dependencies instead
of discourse level information. We extract all the morph pairs
between the morphs of any two words in a sentence as the can-
didate morph triggers. The candidate morph trigger pairs are ex-
tracted from the hypothesis sentences (1-best and oracle) to ob-
tain also the negative examples for DLMs. Among the possible
candidates, we try to select only the pairs where morphs are oc-
curring together for a special function. This is formulated with
hypothesis testing where null hypothesis represents the in-
dependence and the alternative hypothesis represents the
dependence assumptions of morphs in the pairs [44]. The pairs
with higher likelihood ratios are assumed
to be the morph triggers and used as features. The feature tem-
plates are given in Table I where represents the
trigger pair.

D. Topic Sensitive Features

The main motivation in topic sensitive features is to incor-
porate semantic information into language modeling. We apply
statistical approaches also to word hypotheses to automatically
assign topics to the utterances. Here we extend the work given
in [5] for ME language models to DLMs.

We only use the reference transcriptions of acoustic model
training data for topic clustering. This data contains BN record-
ings collected from 375 different shows. First we apply the Text-
Tiling algorithm [45] on the reference transcriptions of the con-
secutive utterances of each show in order to split the entire data
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into multi paragraphs. In the TextTiling algorithm, the text data
is split into fixed length blocks, pseudo sentences, and lexical
similarity scores are assigned to adjacent blocks. Lexical simi-
larity scores between adjacent blocks are calculated by the nor-
malized inner product of the word count vectors of these blocks.
Thus more common words in adjacent blocks result in higher
similarity scores. Then paragraph boundaries are determined
based on the lexical similarity scores. See [45] for details of the
boundary identification.

In this paper, we use the TextTiling algorithm implementa-
tion in Natural Language Toolkit (NLTK).3 TextTiling is per-
formed over the stems in order to increase the common tokens
in pseudo sentences. We only keep nouns and verbs and remove
everything else in the sentences before TextTiling since these
constituents are considered to carry more useful information
than the other constituents for topic clustering. After splitting
the reference transcriptions into multi paragraphs, each para-
graph is represented as a vector using stems as the terms.
The paragraphs are clustered into topics using the hierarchical
bottom-up clustering algorithm explained in Section IV-C. We
apply average link similarity function in clustering and the sim-
ilarity of the paragraphs are defined with the cosine distance of
their vectors.

After assigning topic IDs to paragraphs, the training utter-
ances corresponding to the reference transcriptions in the para-
graphs get the same topic IDs with the paragraphs. Topic sensi-
tive features are defined using the associated topic IDs of the ut-
terances together with the word -gram features. Example fea-
ture templates are given in Table I where represents the
topic ID of the utterance .

An important issue arises in assigning topics to the held-out
and the test set utterances where the correct transcriptions are
not available. Here we use the ASR hypotheses instead of the
reference transcriptions in topic assignments. We apply two dif-
ferent scenarios to find the most likely topic of a given utterance.
In the first scenario, an utterance is assigned to the most similar
topic of its best ASR hypothesis. In the second scenario, Text-
Tiling is performed over the best ASR hypotheses of consec-
utive utterances and utterances in each paragraph are assigned
to most similar topic of the paragraph. The second scenario is
the same approach with assigning topics to training utterances
except that best ASR hypotheses are used instead of reference
transcriptions. Again the similarity is defined with the cosine
similarity of the vectors of the best ASR hypotheses or

vectors of the paragraphs containing the best ASR hy-
potheses with the vectors of the documents of the topics.

V. EXPERIMENTS

This section explains the experimental setups for the baseline
ASR systems and DLMs and gives the experimental results for
words and sub-lexical units.

A. ASR System Description for Turkish

In our research, we use word-based and morph-based
LVCSR systems developed for automatic transcription of

3http://www.nltk.org/.

Turkish Broadcast News (BN). The acoustic model of the BN
transcription system is built with AT&T tools4 using the Turkish
BN corpus containing 184 hours of BN recordings. Acoustic
models are speaker-independent and they do not utilize dis-
criminative training and speaker adaptation. Separate held-out
(3.1 hours) and test (3.3 hours) data are used to evaluate the
system performance. More detailed descriptions of the corpora
and the acoustic models are given in [27].

The Turkish web corpus [46] (182.3 M words) collected
from major news portals and the reference transcriptions of
the acoustic model training data (1.3 M words) were used in
building generic and in-domain language models respectively
for the BN transcription system. Language models with in-
terpolated Kneser–Ney smoothing as well as entropy-based
pruning were built using SRILM toolkit [47]. Generic and
in-domain language models were linearly interpolated in order
to reduce the effect of out-of-domain data. The interpolation
constant was chosen to minimize the heldout set perplexity.
We used a 200 K word vocabulary, resulting in a 2% OOV
rate, for the word-based system and a 76 K morph vocabulary,
resulting in full coverage,5 for the morph-based system. The
word vocabulary was chosen as the most frequent 200 K words
and morph vocabulary contains all the morphs in the generic
and in-domain text data. The best results were obtained with
3-gram word and 4-gram morph language models. In the
morph-based language models, all the words in the text corpus
were split into morphs and generative -gram language models
were trained as if the morphs were words. Each word in the text
data was segmented on average into 1.4 morphs.

We applied linguistic tools on the ASR transcriptions for
DLM feature extraction, and being provided with transcriptions
of complete sentences is important for the morphological dis-
ambiguation tool and especially important for the dependency
parser. Therefore, we converted segments manually labeled by
the annotators to complete sentences. Since some sentences
can be quite long for Turkish, we generated lattices based on
manually labeled segments with the pruned language models
in the first pass recognition. Then the lattices belonging to the
same sentence were concatenated and re-scored with unpruned
language models. If the manually labeled segments contained
utterances belonging to more than one sentence, we split these
utterances into smaller chunks from the sentence boundaries
before first-pass recognition. Sentence boundaries were ob-
tained from the reference transcriptions.

B. Experimental Setup for DLMs

DLM training data for words and morphs were generated by
decoding the acoustic model training data (184 hours) with the
word-based and morph-based ASR systems, respectively. Lan-
guage model over-training was controlled via 12-fold cross val-
idation. Utterances in each fold were decoded with the baseline
acoustic model trained on all the utterances and the fold-specific
language model. A fold-specific language model was generated
by interpolating the generic language model with the in-domain

4http://www.research.att.com/simfsmtools/{fsm,dcd}
5A word is considered as OOV if it cannot be generated by any combination

of the morphs in the vocabulary.
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language model built from the reference transcriptions of the ut-
terances in the other 11 folds. We did not determine a new inter-
polation constant for each fold-specific language model. Instead
we used the same interpolation constant utilized in the baseline
language model. 50-best lists were generated from the lattices
based on sentence-based segmentations. We used the scenario
explained in Section IV-A to obtain sentence-based segmenta-
tions. We chose to work on 50-best hypotheses for DLMs since
our previous research [2] showed that increasing the N-best size
from 50 to 1000 does not give any significant difference on the
DLM performance, an observation also noticed in other work
on discriminative training as well [16].

DLM features were extracted from the 50-best hypotheses
and feature parameters were trained with the perceptron algo-
rithm given in Fig. 1. In the perceptron model the parameter for
the baseline model, (the weight associated with ),
was set to a fixed number and was not updated during training.
We trained several models by changing the constant from 0
to 16. We decided on the constant and the number of iter-
ations by looking at the held-out set WER. The best held-out
set WER was obtained in 1–3 iterations of the perceptron algo-
rithm. Averaged perceptron parameters were used in the evalu-
ation of the held-out and test sets. 50-best word and morph hy-
potheses were used in discriminative reranking as well. 50-best
lists for the held-out and test data for word and morph DLMs are
generated by decoding the held-out and test utterances with the
baseline word-based and morph-based ASR systems explained
in Section V-A.

C. Experimental Results

In the experiments we investigated the combinations of
different -gram orders (unigrams, unigrams+bigrams, uni-
grams+bigrams+trigrams) for the proposed feature set. The

-gram combination yielding the lowest WER on the held-out
set was chosen as the best combination. If different combi-
nations yielded the same amount of improvements, then the
one with the lowest number of features was chosen as the best
combination. Features from other information sources were
incorporated into the best -gram combination of the current
feature set. We performed many experiments with different
feature combinations but we only report the best scoring ones.

The results of DLM experiments on word hypotheses are
given in Table II. Here “Feats” represents the number of fea-
tures extracted from the 50-best lists. The number of features
with non-zero weights after the parameter training is denoted by
“ActFeats.” -gram features up to trigrams are tried for words,
roots and stem+endings. The best results are obtained with un-
igrams both in word and morphological feature sets. Word uni-
gram features result in 0.4% improvement over the test set error
(significant at as measured by the NIST MAPSSWE
test). Morphological feature sets, stem+endings and IGs, yield
higher gains than word features. However, root unigram features
seem to overtrain on the held-out data since the gain obtained
on the held-out set is not preserved on the test set. The best per-
forming morphological feature set, , reduces the
test set error from 23.4% to 22.6% (significant at ).

Then, we utilize syntactic features together with word fea-
tures. PoS tag unigram and bigram features yield additive 0.5%

TABLE II
RESULTS ON 50-BEST WORD HYPOTHESES

(significant at ) improvement on top of the gain ob-
tained with word unigrams on the test set. Inspired by class-
based features for morphs, we also investigated automatically
induced word class features in word DLM experiments [de-
noted by (1,2)]. We clustered words in the text corpora, web
corpus and reference transcriptions of acoustic model training
data, into 26 clusters using Brown et al.’s approach. The reason
of choosing 26 automatically induced classes is to provide a
fair comparison with PoS tags since we use 26 different PoS
tags in our experiments. Even though the held-out set WERs are
the same for PoS tag and class-based features, automatically in-
duced class features yield 0.3% less improvement compared to
PoS tag features on the test set. PoS tags may provide a more
meaningful word classing with small number of clusters than
automatic word clustering. Dependency features, H2H(all),6 are
incorporated into word and PoS tag features. However, the per-
formance is degraded most probably due to data sparsity with
5.8 M features. In addition, only H2H(tt) features are incorpo-
rated into the same set to see the effect of PoS tag dependencies
together with PoS tag -grams. However, no improvement is
achieved.

Finally, we perform experiments with topic sensitive features.
We cluster the training data utterances into 40, 100, and 200
topics using the hierarchical clustering algorithm and assign
these topics to held-out and test set utterances as explained in
Section IV-D. Topic sensitive features obtained with 40 topics
work slightly better than the features obtained with 100 and 200
topics. Additionally, assigning topics to held-out and test sets
over the paragraphs, obtained with TextTiling, instead of sen-
tences yield slightly better results. The best gains with topic
sensitive features are obtained when topic unigram features are
added to word unigram features. However, the improvement on
top of word unigram features is small (0.1%).

The results of DLM experiments on morph hypotheses are
given in Table III. As with the word unigram features, morph
bigrams and trigrams do not introduce any gains over morph
unigrams, moreover they degrade the performance of the uni-
gram features. Morph unigram features yield 0.6% (significant
at ) improvement over the baseline.

Then, we incorporate automatically derived morpho-syn-
tactic features into morph unigrams. Automatically induced
classes are extracted from the morph corpora which contain
web corpus and reference transcriptions of acoustic model

6�������� � ������� 	 �����
� 	 ����
�� 	 ����
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TABLE III
RESULTS ON 50-BEST MORPH HYPOTHESES

training data words segmented into morphs. SRILM toolkit
is used for clustering with Brown et al.’s algorithm and 50,
100, and 200 classes are generated from the morph corpora.
Each cluster set gives almost the same result in the experiment.
Therefore we only report the result with 50 clusters in Table III.
The feature templates with this clustering are denoted by .
In clustering with MED similarity, the imposed threshold con-
straint results in 5186 clusters. The feature templates with this
clustering are denoted by in Table III. Note that MED
clustering is only applied to non-initial morphs. For the initial
morphs we both try assigning all of them into the same cluster
and clustering these morphs with Brown et al.’s algorithm.
These two approaches give almost the same result and we only
report the result where all initial morphs are assigned to the
same cluster in Table III. Both of the Brown and MED clus-
tering approaches give additional 0.5% significant
improvements on top of the gain obtained with morph unigram
features on the test data.

In addition to morpho-syntactic clusters, we also experiment
with PoS tags of concatenated morph sequences. PoS tags of
morph sequences are obtained using the morphological parser
and disambiguation tool by assuming that concatenation of
morph sequences result in grammatically correct Turkish words.
The words that are not parsed by the parser are automatically
labeled with the “Noun” tag. This is the default labeling in the
dependency parser and we used the same tag to be consistent
with the word PoS tag experiments. Morph unigrams together
with PoS tag unigrams and bigrams of morph sequences are the
best performing feature set on the held-out morph hypotheses
and reduce the test set error from 22.4% to 21.4% (significant
at ).

Long distance trigger features are extracted from the oracle
and 1-best morph hypotheses in the -best lists. Incorporating
long distance morph trigger features into either morph unigrams
or into morph unigram and cluster features yields no additional
improvements. We also tried topic features on morphs using the
same topic clustering that we used for words. The topic features
are defined in the same way with words using morph:topic pairs.
Topic features for morphs do not give significant gains on top
of morph unigram features.

VI. DISCUSSION AND CONCLUSION

In this paper, we investigate linguistically and syntactically
motivated features in addition to the basic word and morph
n-gram features in Turkish DLMs. The linguistically motivated

features, morphological, and syntactic features, are investigated
on word hypothesis sentences. Statistically derived features,
morph clusters and long distance morph triggers, are investi-
gated on morph hypothesis sentences. We also incorporate topic
information into DLMs by obtaining topics using statistical
approaches. The proposed feature sets yield significant im-
provements in DLMs for word-based and morph-based Turkish
BN transcription systems.

The DLM experiments on word and morph hypotheses reveal
some important and interesting results. First, basic unigrams are
shown to be effective for obtaining significant gains on the base-
line and increasing the -gram context does not introduce any
further gains, also observed in [18]. One possible explanation is
that unigrams reduce the data sparsity compared to the higher
order -grams since the DLM training data is limited. Another
explanation can be the adaptation of the language model with
the perceptron algorithm [48]. In order to alleviate the effect of
out-of-domain data, generic and in-domain language models are
linearly interpolated in the ASR systems. However, DLM with
unigram features can provide an extra adaptation by biasing the
words or morphs occurring more frequently in the in-domain
data. In order to investigate if the gains of the word and morph
unigram features are really coming from language model adap-
tation, we investigate the correlation between the active unigram
feature weights and the difference of the unigram log probabil-
ities between the in-domain and the baseline language models
both for words and morphs. Observing a higher correlation be-
tween these two components would be a strong evidence of the
language model adaptation. However, we obtain rather low cor-
relations, 0.09 for words and 0.16 for morphs, which means that
the gain obtained with the word and morph unigram features is
not only coming from language model adaptation.

Second, we demonstrate the superiority of sub-lexical units
in DLMs in addition to generative language models. When we
compare reranking word hypotheses with basic word features
and reranking morph hypotheses with basic morph features,
morphs yield more improvement than words. The gain obtained
with morph unigrams is higher than the gain obtained with
word unigrams (See Tables II and III. Additionally, sub-lexical
units, i.e., IGs and stem+endings, also outperform words when
reranking word hypotheses. As suggested in [16] for Czech,
factorizations of morphological tags can be useful as DLM
features. However, for Turkish the number of morphological
tags per word can be quite high. We have found that in a
vocabulary of 1.6 M morphologically decomposed words each
word gets on average 6.1 morphological tags excluding the
root. Therefore, meaningful groupings of lexical and surface
form morphological tags, i.e., IGs and endings, provide a good
compromise between composite and factored representations
of these tags.

Third, it is shown that the -gram features that capture the
generalizations of the training data, i.e., PoS tags and morpho-
syntactic clusters, are effective in DLM experiments. These fea-
tures achieve significant additive gains on top of the gains ob-
tained with word and morph unigram features. However, the
topic-sensitive features which localize the data by classifying
same words/morphs occurring in different topics as different
features do not give any significant gain on top of word/morph



IE
EE

Pr
oo

f

10 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 0, NO. 0, 2011

unigrams. Since our DLM training data is limited, topic-sensi-
tive features may introduce sparsity to the data.

Fourth, neither H2H dependency relation nor morph trigger
features give any improvements. Morph triggers are just a brute-
force attempt to incorporate longer distance morph relations into
DLMs and they fail as DLM features. However, H2H dependen-
cies are linguistically motivated, therefore they are expected to
be more effective in DLMs. H2H(all) features even degraded
the performance of the existing feature set when they are in-
corporated into the combination of word and PoS tag -gram
features. One possible problem is that the hypothesis sentences
in the DLM training data contain recognition errors and the
parser generates the best possible dependency relation even for
incorrect hypotheses. As a result, the dependency analysis of
the incorrect hypotheses may not provide good negative exam-
ples for discrimination of the correct and incorrect hypotheses.
Another possible problem is the sparseness of the observations
per parameters. If a feature is not seen frequently enough in
the training data, we cannot estimate a robust parameter for
this feature with the perceptron training. As a result, incorpo-
rating sparse features can degrade the performance of the ex-
isting model. We believe that the high number of features are
masking the expected gains of the proposed features. This will
make feature selection a crucial issue in our future research.

Finally, DLM training data is limited and as a result the im-
provements attained with unigram features (not higher orders)
and with class-based, morph, and morphological features may
be due to reducing the effect of data sparsity. Therefore, the ul-
timate importance of “real” linguistic and statistical features is
not completely clear, but incorporating linguistic and statisti-
cally obtained information into DLMs seems to be the right di-
rection for morphologically rich languages. Using more DLM
training data may help to reveal further gains with linguistic and
statistically obtained information.
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