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Abstract. In biological sequence processing, Multiple Sequence Alignment 

(MSA) techniques capture information about long-distance dependencies and 

the three-dimensional structure of protein and nucleotide sequences without re-

sorting to polynomial complexity context-free models. But MSA techniques 

have rarely been used in natural language (NL) processing, and never for NL 

morphology induction. Our MetaMorph algorithm is a first attempt at leverag-

ing MSA techniques to induce NL morphology in an unsupervised fashion. 

Given a text corpus in any language, MetaMorph sequentially aligns words of 

the corpus to form an MSA and then segments the MSA to produce morpholog-

ical analyses. Over corpora that contain millions of unique word types, Meta-

Morph identifies morphemes at an F1 below state-of-the-art performance. But 

when restricted to smaller sets of orthographically related words, MetaMorph 

outperforms the state-of-the-art ParaMor-Morfessor Union morphology induc-

tion system. Tested on 5,000 orthographically similar Hungarian word types, 

MetaMorph reaches 54.1% and ParaMor-Morfessor just 41.9%. Hence, we 

conclude that MSA is a promising algorithm for unsupervised morphology in-

duction. Future research directions are discussed. 
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1 Introduction 

Biologists are interested in the function of genes and proteins. Since organisms evolve 

by the slow mutation of individual base pairs in their DNA, gene regions from related 

organisms that consist of similar sequences of nucleotides will likely perform similar 

functions. Multiple Sequence Alignment (MSA) techniques are one suite of tools that 

computational biologists use to discover nucleotide sequences that are unusually simi-

lar, and that thus likely serve similar biological functions [1].  

Like biologists, linguists are interested in the sub-regions of longer linear se-

quences that serve particular functions. Where biologists look at strings of nucleotide 

bases in DNA or sequences of amino acids in proteins, linguists examine the strings 

of phonemes or written characters that form words. And where biologists seek genes, 

linguistics identify morphemes—the smallest linguistic units that carry meaning. Giv-

en the similarities between biological and linguistic sequences, we seek to transfer the 

successes of MSA models from biology to induce natural language morphology in an 

unsupervised fashion. 



Although we are inspired by biology, building MSAs for natural language mor-

phology induction is fundamentally different from building MSAs in biological appli-

cations. In biology, it is typical to align a few sequences (on the order of 10) of very 

long length (perhaps millions of base pairs). In our NL morphology application, the 

sequences are words and are thus relatively short (on the order of 10 characters)—but 

there may be tens of thousands or even millions of distinct word types to align. More-

over, our goals are somewhat different from the goals that biologists typically have 

when applying MSA techniques. We wish to definitively segment words into separate 

morphemes, but we have not encountered any work in computational biology that 

uses MSA to segment out genes. Instead, biologists use MSA to merely identify re-

gions of likely similarity between sequences. 

Relating our MSA work to research directions in NL morphological processing: 

While we are unaware of any prior attempt to model the structure of NL morphology 

using MSA techniques, MSA is at base a method for measuring distances between 

strings—and string edit distances have played a part in a variety of unsupervised mor-

phology induction systems. Baroni et al. [2], for example, seed a semantically based 

induction system with pairs of words that are orthographically similar. Likewise, Wi-

centowski [3] trains a statistical model of morphological structure from several weak 

correlates of morphological relatedness—including the Levenshtein distance between 

pairs of words. Readers interested in unsupervised morphology induction more 

broadly may consult Chapter 2 of [4]. 

2 The MetaMorph Multiple Sequence Alignment Algorithm 

The input to an MSA algorithm is a set of sequences; and the output is an alignment 

of the elements of the sequences. Fig. 1 depicts an alignment over a set of ten English 

words. Each sequence, i.e. each word, in Fig. 1 forms a separate row of the alignment 

table. An MSA algorithm places the characters of each sequence into aligned col-

umns. The order of elements in each sequence is fixed, but, to improve an alignment, 

an MSA algorithm may place gaps, ‘-’, in some columns between the characters of a 

sequence. The ten sequences of Fig. 1 are arranged into eight aligned columns.  

A variety of algorithms could produce a multiple sequence alignment like that in 

Fig. 1. Our MetaMorph algorithm employs two standard MSA algorithms in turn: 

Progressive Alignment [5] and a Profile Hidden Markov Model (HMM) [1]. Both 

Progressive Alignment and Profile HMMs define position specific distributions over 

characters. Fig. 2 displays the position specific character distributions for the align-

ment in Fig. 1. For each of the eight columns of the alignment table, Fig. 2 has a cor-

responding column that contains a smoothed probability distribution over the alphabet 

of characters that appears in Fig. 1: Each column distribution in Fig. 2 contains a 

count for each occurrence of each character in the corresponding column of Fig. 1, 

plus a Laplace smoothing constant of one for each character. We treat the gap as 

simply another character of the alphabet. The probability of a character given a col-

umn is the ratio of the character count in that column’s distribution to the distribution 

total. For example, in Figs. 1 and 2, the probability of the character ‘d’ given column 

1 is 5/26. 



2.1. Building an Initial MSA via Progressive Alignment 

MetaMorph begins with a progressive alignment algorithm that builds an initial 

alignment over an orthographically similar subset of the full input corpus. Progressive 

alignment algorithms build an alignment for a set of sequences iteratively. After a 

first pair of sequences are aligned to each other, a third sequence is aligned to the 

newly formed alignment; a fourth sequence follows; and a fifth, etc. The size of the 

orthographically similar subset of corpus words is a free parameter. We experimented 

with subsets that contained between 5,000 and 20,000 words. 

Step 1: Ordering. Before MetaMorph aligns words, our algorithm orders the words 

which will form the initial MSA. The first two words in the ordered list are the Le-

venshtein most similar pair of words from the 1000 most frequent words of the input 

corpus. MetaMorph then sequentially adds words to our ordered list by identifying, 

from all the words in the input corpus, the word that is most similar to some word 

already in the ordered list. To ensure that the initial MSA contains standard natural 

language words, we require all words in the ordered list to be between 5 and 16 cha-

racters in length and to contain no hyphens or numbers. MetaMorph continues to add 

words to the ordered list until a preset size limit is reached. 

Step 2: Alignment. To produce an MSA from the ordered list of words, MetaMorph 

initializes an MSA to the first word in the sorted list. Each character in the first word 

appears in a separate column. Using Laplace smoothing, MetaMorph then calculates 

the (trivial) column distributions over the characters of the alphabet, a la Fig. 2.  

For each remaining word, w, in the ordered list, MetaMorph uses a dynamic pro-

gramming algorithm to, in turn, identify the lowest-cost alignment of w to the current 

MSA. Beginning with the first character of w and the first column of the MSA, there 

are three possible alignment choices: First, the character may be aligned to the col-

umn; Second, the column may be aligned to a gap that is inserted into w; and third, 

Chars 1 2 3 4 5 6 7 8 
a 1 2 5 1 1 1 5 1 
c 1 1 1 1 5 1 1 1 
d 5 1 1 1 1 1 1 3 
e 1 1 1 1 1 1 1 1 
g 1 1 1 2 1 1 1 5 
h 1 1 1 1 2 1 1 1 
i 1 1 1 1 1 5 1 1 
j 5 1 1 1 1 1 1 1 
l 2 1 1 1 1 1 1 1 
m 1 1 1 5 1 1 1 1 
n 1 1 1 6 2 1 5 1 
p 1 1 1 1 5 1 1 1 
r 2 1 1 1 1 1 1 1 
s 1 1 1 1 1 1 2 2 
u 1 1 7 1 1 1 1 1 
gap 1 10 1 1 1 7 2 4 

 
Fig. 1. A sample multiple        

sequence alignment (MSA) 

Fig. 2. Laplace-smoothed (count plus 1) position 

specific character distributions for the MSA in Fig. 1. 
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the character may be aligned to a column of gaps that is inserted into the MSA. We 

define the cost of matching a character, c, to an MSA column, l, to be the negative 

logarithm of the probability of c occurring in l. Treating gaps as just another charac-

ter, the cost of aligning the column l, to a gap in the word w is simply the negative 

logarithm of the probability of a gap in l. And we measure the cost of matching a cha-

racter, c, to a newly-inserted column of gaps as the negative logarithm of the 

(smoothed) probability of c appearing in a column that thus far contains only gaps. As 

the number of words in the alignment increases, the contribution of Laplace smooth-

ing to the overall character distribution decreases, and hence the cost of inserting a 

column of gaps into the MSA increases.  

The score of an alignment of a word, w, to an MSA is the sum of the match costs 

and gap insertions costs specified by that particular alignment. Dynamic programming 

with back-tracing finds the optimal alignment of each w in O(NM) time, where N is 

the length of w, and M the length of the current MSA. When all words in the ordered 

wordlist have been inserted into the MSA, the initial alignment cycle is complete. 

Step 3: Realignment. After the initial alignment phase, MetaMorph performs leave-

one-out refinement [6]: Sequentially, MetaMorph removes each word from the MSA, 

and then realigns the removed word to the remaining MSA. MetaMorph halts leave-

one-out refinement when one of two criteria is met: 1. The MSA remains unchanged, 

or 2. The sum of the entropies of the column distributions increases after a set number 

of realignment cycles. Leave-one-out refinement is designed to specialize each col-

umn on a smaller selection of characters. If entropy rises, then the columns are per-

mitting a wider variety of characters, and we halt realignment  

2.2. Finalizing Alignment via a Profile HMM.  

Once MetaMorph’s progressive alignment phase has built an alignment over an or-

thographically similar subset of the full corpus, our algorithm freezes the initial 

alignment as a Profile HMM. Each column of the progressively built alignment acts 

as an HMM state whose character production probabilities correspond to the column’s 

character distribution. Each word of the corpus that was not in the original ortho-

graphically similar subset is then aligned to the Profile HMM.  

2.3. Segmentation  

Having obtained a final MSA, we must now produce a morphological segmentation of 

the input corpus. To motivate the segmentation strategy that the MetaMorph algo-

rithm employs, Fig. 3 depicts six sequences of an MSA built over a Hungarian corpus 

of 500,000 words. The first five sequences in Fig. 3 are legitimate inflections of the 

word in the first sequence: ‘között’ is a postposition in Hungarian, while ‘i’, ‘t’, ‘e’, 

and ‘em’ are suffixes that attach to postpositions. In contrast, the last sequence in Fig. 

3, ‘kötöttem’ is an inflected verb that is linguistically unrelated to the other sequences. 

A reasonable segmentation of the final sequence would be ‘köt-ött-em’, with ‘köt’ a 

verb stem meaning ‘tie’, ‘ött’ marking past tense, and ‘em’ 1
st
 person singular.  



To segment an MSA into morphemes, our MetaMorph algorithm selects a set of 

columns in the MSA and segments all the words of the corpus at those columns. Ex-

amining Fig. 3, the pattern of gap columns does not appear to indicate where a mor-

pheme boundary should be placed: columns of gaps separate all the characters of all 

the words, with long sequences of gap columns sometimes occurring internal to a 

morpheme (eleven gaps separate the doubled ‘t’s for example). Other obvious tech-

niques, such as segmenting at columns with the maximal gap probability or at those 

columns whose probability distributions had minimal entropy, generated completely 

implausible segmentations. 

Lacking a segmentation strategy that relies solely on the MSA, MetaMorph in-

stead leverages knowledge from an independent algorithm for unsupervised induction 

of morphology. The independent system which we used is the ParaMor-Morfessor 

Union system from Morpho Challenge 2009 [7]. The ParaMor-Morfessor system 

placed first at F1 for morpheme identification in three of the five languages of Morpho 

Challenge 2009. To segment the words of a corpus, the MetaMorph algorithm 

searches for a set of segmentation columns that maximize the F1 score against the 

independent (still unsupervised) system.  

 MetaMorph uses a greedy search algorithm to decide upon a set of segmentation 

columns. One at a time, MetaMorph considers each column in the MSA as a potential 

segmentation point. The segmentations that result from a particular column are scored 

against the analyses provided by the independent morphology segmentation algo-

rithm. MetaMorph retains that segmentation column which most improves F1, and 

then iteratively considers adding a second segmentation column. If, after any itera-

tion, no column is found to improve F1, MetaMorph terminates the search for addi-

tional segmentation columns. Although the segmentation columns are fixed for all 

words, the final number of morphemes in any particular word will still vary because, 

after segmenting a word, MetaMorph discards morphemes that consist solely of gaps. 

3 Results and Conclusions 

To evaluate the success of the MetaMorph algorithm, we participated in Morpho 

Challenge 2009 [8], where ten groups from around the world assessed their unsuper-

vised morphology induction systems with both linguistic and task-based criteria. The 

linguistic evaluation of Morpho Challenge measured the precision, recall, and F1 

score of each unsupervised algorithm at identifying the constituent morphemes of the 

words in a corpus. Of the six tracks of the linguistic competition, MetaMorph had the 

Fig 3. Six Sequences from an MSA induced over a Hungarian corpus. 

-----k----ö---z-----ö-------t-----------t--------- 

-----k----ö---z-----ö-------t-----------t----i---- 

-----k----ö---z-----ö-------t-----------t----i-t-- 

-----k----ö---z-----ö-------t-----------t----e---- 

-----k----ö---z-----ö-------t-----------t----e-m-- 

-----k----ö---t-----ö-------t-----------t----e-m-- 

 



least success at the two Arabic scenarios and the most success on Turkish. Meta-

Morph’s poor performance on Arabic, less than 6% F1 for both the vowelized and 

unvowelized tracks, is directly attributable to MetaMorph’s reliance on the ParaMor-

Morfessor Union system for its segmentation strategy. The Union system also suf-

fered its poorest performance on the Arabic tracks, F1 scores of less than 10%.  

In Turkish, MetaMorph outperformed at F1 the baseline unsupervised system of 

Morpho Challenge, a system named Morfessor [9]: MetaMorph achieved an F1 score 

of 33.6% where Morfessor came in at 29.7%. Backstopping MetaMorph’s compara-

tively strong performance on Turkish is the highest absolute recall score that Meta-

Morph attained for any language, 29.5%. But since absolute scores of morpheme 

identification are not comparable across languages, consider MetaMorph’s recall as a 

fraction of the recall score (60.4%) of that system [7] which had the highest F1 score 

at Morpho Challenge for Turkish: this recall fraction is 0.488 (i.e. 29.5% / 60.4%). If 

we calculate MetaMorph’s recall fraction against the F1-best system for the other non-

Arabic languages of Morpho Challenge we get 0.401 for English, but just 0.322 for 

German and 0.300 for Finnish, Interestingly, there are many fewer word types in the 

Turkish and English data sets (617,000 and 385,000 respectively) of Morpho Chal-

lenge than there are in the Finnish and German sets (2.21 and 1.27 million respective-

ly). The following experiments suggest, counterintuitively, that it may be the smaller 

size of the Turkish and English data sets that lead to MetaMorph’s higher recall. 

We used Hunmorph [10], a hand-built Hungarian morphological analyzer, to pro-

duce a morphological answer key containing 500,000 unique Hungarian word types 

from the Hunglish corpus [11]. Over the full Hungarian corpus, MetaMorph’s F1 

score reached a paltry 19.7%. But we found that if we restricted our evaluation to just 

those words from which MetaMorph’s progressive alignment algorithm constructed 

the initial MSA, performance improved dramatically.  

We ran three experiments. In the first experiment, MetaMorph’s progressive 

alignment algorithm built an MSA from a set of 5,000 orthographically similar words, 

i.e., the size limit in step 1 of Section 2.1 is set to 5,000; in the second, MetaMorph 

used a size limit of 10,000 words; and in the third, a size limit of 20,000. During the 

segmentation phase of these three experiments, we instructed MetaMorph’s greedy 

search to select segmentation columns that maximized F1 score, not over the full 

Hungarian corpus, but rather over just the words in the smaller set of orthographically 

similar words. Using the Linguistic evaluation procedure from Morpho Challenge, we 

then evaluated MetaMorph’s morphological analyses over these same three (smaller) 

sets of orthographically similar words. Additionally, we evaluated the performance of 

the ParaMor-Morfessor Union system over these same three sets of words. To eva-

luate the Union system we used the full Hungarian corpus to induce segmentations, 

but restricted our evaluations to the sets of 5,000, 10,000, and 20,000 words. The re-

sults of these experiments appear in Fig. 4. 

 Immediately striking from Fig. 4 is that MetaMorph significantly outscores the 

ParaMor-Morfessor Union over the 5,000 and 10,000 word sets. Remember that Me-

taMorph’s segmentation phase seeks to emulate the segmentations that the ParaMor-

Morfessor Union system produces. Over small datasets, MetaMorph has successfully 

generalized beyond the system that is used as a segmentation guide. 

Furthermore, as the set size increases in Fig. 4, MetaMorph’s F1 steadily decreas-

es. Since each of our three experiments is learning from and evaluating over a differ-



ent set of words, one explanation for MetaMorph’s downward trend might simply be 

that the set of 20,000 words contained more inherent morphological complexity than 

the smaller sets. But this explanation fails when we examine the performance of the 

ParaMor-Morfessor Union system over these same data sets: The Union system’s 

performance increases in step with the set size. Instead, MetaMorph’s strong perfor-

mance at the smallest word-set sizes, leads us to conclude that MSA is most effective 

when used over a smaller set of words that exhibit orthographic similarity. This same 

effect may be at work in MetaMorph’s higher recall scores for English and Turkish in 

Morpho Challenge proper. 

For some tasks, such as machine translation (MT), MetaMorph’s conservative 

lower-recall approach to morphological segmentation pays off: MetaMorph took 

second place in Finnish MT at Morpho Challenge 2009, with a BLEU score of 28.20. 

In the MT evaluation the words of a non-English language text were replaced by their 

automatic morphological analyses before applying a statistical MT algorithm. The 

baseline statistical MT system that translates directly from words had a BLEU score 

of 27.64; thus MetaMorph improves BLEU score over the word-based model by 0.56 

BLEU points. For exhaustive details about the absolute and relative performance of 

the MetaMorph algorithm at Morpho Challenge 2009, see [8]. 

The Next Steps. MetaMorph’s success at analyzing the morphological structure of 

smaller, more focused, sets of words suggests that in future we use progressive align-

ment techniques to build a number of separate alignment structures focused on differ-

ent subsets of the full corpus. Each subset of the corpus would contain orthographical-

ly similar words. It may also be the case that the optimal number of words for which 

to build an alignment is smaller than 5,000. Indeed, the optimal set size may vary by 

language, or even by part-of-speech within a language. 

A second weakness that we would like to address in the MetaMorph algorithm is 

the poor correlation between the arrangement of columns in the MSA and the ar-

rangement of morphemes within words. Where most morphemes are contiguous se-

quences of characters, MetaMorph’s MSA columns place gap symbols internal to true 

morphemes. Better correlation between MSA columns and morphemes in words 

Fig. 4. The F1 performance of two unsupervised morphology induction algorithms 

for three subsets of a Hungarian corpus. 
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would free MetaMorph from relying on an independent unsupervised morphology 

induction system during segmentation (Section 2.3). A match cost function that ac-

counted for string position is one potential method for producing contiguous mor-

pheme columns. We might, for example, lower match costs (and thereby reduce the 

number of gap columns) near the middle of an MSA to allow for the wide variety of 

characters that are likely in the stems of words. Another possible solution may be to 

tie the character distributions of neighboring MSA columns so as to avoid overtrain-

ing a column to a particular character.  
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