
Reranking with Baseline System Scores and Ranks as Features

Kristy Hollingshead and Brian Roark
Center for Spoken Language Understanding

OGI School of Science & Engineering
Oregon Health & Science University

Beaverton, Oregon, 97006 USA
{hollingk,roark }@cslu.ogi.edu

Abstract

Reranking models have become ubiquitous in
most NLP applications where suitable training
data can be found, yet the utility of rerank-
ing has not been universal. This paper in-
vestigates two recent reranking “mysteries”,
and finds that the use of features derived from
baseline system scores is responsible for the
underperformance in both cases. Several al-
ternative methods for encoding features de-
rived from baseline scores are shown to repair
these problems. Additional methods for deriv-
ing score features from the output of baseline
systems are investigated, leading to a better
understanding of the best practices for train-
ing reranking models under a variety of con-
ditions.

1 Introduction

Reranking has proven to be a successful strategy for
many NLP tasks, including parsing (Collins, 2000;
Charniak and Johnson, 2005), speech recognition
(Fiscus, 1997; Goel et al., 2000; Collins et al., 2005;
Roark et al., 2007), and machine translation (Shen
et al., 2004; Och and Ney, 2004). In a reranking sce-
nario, a solution set produced by a baseline system is
rescored, typically using richer, more complex mod-
els, in order to select a better solution from among
those provided by the baseline system. The recent
success of discriminative reranking approaches has
made this technique a ubiquitous part of the standard
toolbox in NLP. In tasks with appropriate training
data, reranking can usually be counted on to provide
a significant additional accuracy improvement.

Unfortunately, this is not always the case. Two
recent syntactic parsing papers have included very

promising techniques for use in a baseline system,
which did not achieve typical improvements when a
reranking model was trained to be applied to the new
baseline systems output. In McClosky et al. (2006),
the technique of “self-training” was used within
the Charniak and Johnson (2005) parsing pipeline,
whereby the output of the parser on large amounts
of unlabeled data was used to re-train the baseline
parsing model. This technique yielded over 1 per-
cent absolute improvement over the already state-
of-the-art parsing performance of the baseline Char-
niak and Johnson (2005) parsing pipeline, a very im-
pressive result. However, this result was achieved
without retraining the reranking model used in the
pipeline, i.e., the reranker used in the final system
configuration was trained on data that did not use
self-training. This represents a significant mismatch
between training and testing conditions, and perhaps
it was just a lucky accident that the resulting model
yielded system improvements when applied to these
new n-best lists. In footnote 1 of McClosky et al.
(2006), they note that they “attempted to retrain the
reranker” but no improvement was achieved. This
puzzling failure to train a useful reranking model for
the new parsing conditions has remained a mystery.

In Hollingshead and Roark (2007), a similar lack
of expected improvements with reranking was ob-
served with the Charniak and Johnson (2005) pars-
ing pipeline. In this paper, the parser was run twice,
once with constraints imposed by a finite-state chun-
ker, and once without constraints. The resulting n-
best lists were unioned, and a reranker was trained
on these unioned lists. Despite significant improve-
ments in baseline parser performance, this particu-
lar scenario did not achieve the expected improve-

Technical Report 1 CSLU-08-001

ments via reranking, much as with the McClosky et
al. (2006) results. Again, this lack of improvement
was noted as a mystery, requiring further investiga-
tion.

This paper has two objectives. First, we will
demonstrate that the underperformance in both of
these cases can be traced to the method of deriv-
ing a feature for reranking from the baseline system
score of each candidate in then-best list. Replicat-
ing the above training scenarios, we present several
techniques that make better use of the baseline sys-
tem score, and thus achieve the expected levels of
reranking performance. Second, we will examine
more generally the question of how to derive score
features from the output of the baseline system. In
particular, we investigate the use of features that go
beyond the baseline system score to capture infor-
mation about rank or centrality of the particular can-
didate within the set output by the baseline system.
Overall, this paper advances our understanding of
the best practices for training reranking models un-
der varied baseline system conditions.

In the next section, we discuss a number of rea-
sons why using the baseline system score directly
as a feature in the model may be problematic. This
will be followed by empirical results showing sev-
eral techniques for making use of the baseline score
applied in multiple reranking scenarios. Finally,
we will propose a range of new score features de-
rived from the baseline system output and compare
them empirically, again using three different rerank-
ing scenarios.

2 Baseline System Score

Most reranking systems include the score from the
baseline system within the reranking model. In
parsing, many systems include the parser baseline
score as a feature in the reranker, including the
Collins (2000) parser and the Charniak and Johnson
(2005) parsing pipeline. In fact, Charniak and John-
son (2005) explicitly demonstrated the difference in
reranking performance with and without the parser
baseline score as a feature: with the baseline score
feature, reranking improved the parser F-score (on
the Penn Wall St. Journal (WSJ) treebank (Marcus
et al., 1993) section 24) from 88.9 to 90.2, whereas
without the score feature the reranker provided a

smaller F-score improvement, to 89.5. These results
established what have become the standard practices
of reranking.

However, there are several reasons why using the
score from the baseline system directly as a fea-
ture may not be the best practice. First, in or-
der to improve upon the baseline output, a rerank-
ing model must select something other than the
baseline-best candidate solution at least once; oth-
erwise the one-best output of the reranker would be
unchanged from the baseline. Thus, even though
the baseline scoring provides a fairly reliable esti-
mate of high-quality candidate solutions, the rerank-
ing model must “down-weight” the baseline score in
order to move away from the baseline-best candidate
solution.

Second, the baseline scores are typically real-
valued numbers, rather than integer-valued or
indicator-valued numbers as is the case for most
other features in a reranking model. It is common
in machine learning to optimize continuous-valued
features by quantization, i.e., grouping the feature
values into a pre-defined number ofbins, then treat-
ing each bin as an individual (indicator) feature,
such as the approach to modeling exon length in
Bernal et al. (2007). A secondary approach, and
one that is taken by Charniak and Johnson (2005), is
to essentially learn ascaling factor, where a single
weight is learned for all values of the feature. One
possible problem with learning such a scaling fac-
tor is that it represents a linear weighting function,
which, in conjunction with the requirement that the
reranking model down-weight the baseline score,
can result in over-weighting candidates low in the
n-best list.

Third, as previously stated, the baseline score is
often fairly accurate in indicating high-quality solu-
tions, and thus provides a particularly reliable fea-
ture. In fact, the baseline system score was shown to
be the single mostinfluentialfeature in the Charniak
and Johnson (2005) parsing and reranking pipeline.
Training with such a strong feature can result in
weight under-training for the other features in the set
(Sutton et al., 2006). One method for dealing with
this is to remove the baseline-score feature from the
reranking model during training, then empirically
optimizing a mixing weight for combining the base-
line score with the reranker score.

Technical Report 2 CSLU-08-001

Finally, the baseline score may not be the most
reliable metric derivable from the baseline system in
terms of assessing the quality of a candidate. Fur-
thermore, while such a score may reliably indicate a
high-quality one-best candidate, it may not provide
a reliable ranking of the remaining candidates in the
list. Two methods for deriving more reliable features
will be investigated in the last sections of the paper.

3 Pairwise Comparison Scores

In this paper, we conduct pairwise comparisons of
the candidates in the list and use the values derived
from the comparison function to re-score and re-
order the list.

One reason for using characteristics of the list it-
self to score candidates in the list is that the rela-
tive ranking of candidates within the list may not be
an accurate reflection of the similarity of the candi-
dates. Recall that the baseline system is optimized
to find the maximum likelihood candidate; similarly
the reranking model optimizes with respect to the
conditional likelihood of the data. There is no re-
ward (or penalty) for determining an accurate rank-
ing of the full list of candidates. Intuitively it seems
reasonable to think that providing a more accurately-
ranked list of candidates as input to the reranker
would improve the accuracy of the model. However,
it may be the case that the MaxEnt reranking model
that we use in this paper is robust to changes in the
relative ordering of the candidates. In this section we
investigate the effects of re-ordering the parse can-
didates input to the reranking model.

3.1 Pairwise F-score

In parsing, parse candidates are evaluated according
to the F1 metric, which compares each parse to the
gold-standard parse as follows:1

F1 =
2 ∗ |A ∩B|
|A|+ |B|

. (1)

A correct parse, i.e. one which is identical2 to the
gold-standard parse, has an F-score of 1.0. We can

1F1 = 2∗R∗P
R+P

, whereR = |A∩B|
|A| andP = |A∩B|

|B| .
2Standard PARSEEVAL parameterizations ignore the follow-

ing differences for evaluation: different part-of-speech tags,
ADVP/PRT substitutions, and disagreement on bracket bound-
aries that span punctuation marks.

use the F-score to calculate the pairwise similarity of
two parse candidates; two highly-similar parses will
have a high pairwise F-score near 1.0, versus two
very different parses which will have a much lower
pairwise F-score.

3.2 Pairwise Distance-Score

F-score provides asimilarity metric, indicating a
level of shared information between two parse trees.
It would be convenient if we could straightforwardly
use1−F to calculate thedistancebetween two trees.
Unfortunately, such a calculation is invalid as a dis-
tance metric because it does not meet the triangle in-
equality condition (Li et al., 2004), where the length
of the path between two points must be less than or
equal to the path created by adding an intermediary
point:

4AC ≤ 4AB +4BC.

To see that this condition is not met with the
1−F metric, consider the case whereA={x, y},
B={x, y, z}, andC={y, z}. Using1−F to calcu-
late the distance (4) between the three sets gives us
4AC=1−1

4 ,4AB=1−4
5 , and4BC=1−4

5 . Since
3
4>1

5+1
5 , the “distance” calculated by1−F violates

the necessary condition of triangle inequality.
Fortunately, Yianilos (19912002) demonstrated

that a metric meeting each of the conditions neces-
sary for a true distance metric, including the triangle
inequality condition, can be derived from the same
calculations as used for similarity metrics such as
F-score. (See that paper for a proof in the general
case.) We will refer to this metric as the D-score, for
distance metric, which is defined as follows:

D = 1− |A ∩B|
|A ∪B|

. (2)

Note that since|A∪B|=|A|+|B|−|A∩B|, calculat-
ing this distance metric requires just the same mea-
surements as calculating the F-score metric. Thus
in addition to calculating pairwise F-scores to de-
termine the average similarity amongst candidates
in an n-best list, we will also calculate pairwise d-
scores to determine the average distances between
candidates in the list3.

3In the interest of time and space savings, we averaged F-
scores across candidates rather than storing bracket counts as is
the standard operating procedure.

Technical Report 3 CSLU-08-001

Note the similarity between these methods of
pairwise comparison and minimum Bayes-risk in-
ference (Shafran and Byrne, 2004). The value re-
sulting from the full pairwise comparison represents
the expected loss of the hypothesized candidate with
respect to the remainder of then-best list.

4 Functions to Derive Features from
Scores

In this section we will discuss several different func-
tions for deriving and utilizing candidate scores as
features in a reranking model. The default function,
which we will term “Scaling Factor” simply uses
the score in the model, scaled with whatever param-
eter the model training assigns to that feature. To
contrast with this de-facto default, we present three
others, one based on removing the score from the
reranker training and empirically optimizing a mix-
ing factor, and two based on quantizing the score.

4.1 Empirical Optimization

For empirical optimization, the score from the base-
line model is not included in the reranking model.
The resulting reranking model is then combined
with the candidate score with weights empirically
optimized on held aside data. This approach has
multiple possible benefits, which we do not tease
apart here. First, removing the baseline score from
reranker training may improve performance due to
weight under-training when the baseline score is left
in the model. Second, any improvements could be
due to optimizing the mixing with respect to parse
accuracy achieved, rather than with respect to con-
ditional likelihood, as the reranking training does.
It is most likely that any improvements are due to
a combination of these factors; future work will in-
clude further analysis.

4.2 Quantization

In order to address the problem that a linear func-
tion may not be well-suited for weighting a real-
valued feature such as candidate scores, we will ex-
plore several options for quantizing the score. Quan-
tization consists of grouping the possible values of a
variable from a continuous set (such as real num-
bers) to a discrete set (such as integers). With a
discrete set of values and by learning a separate

weight for each possible values, in essence we can
learn a non-linear function for the baseline system–
score feature. We note that distributing the baseline
score into bins is not a novel concept, and was in
fact explored as an option in the original experimen-
tal setup of (Charniak and Johnson, 2005), where it
was found to make little difference. We replicated
these findings, but will demonstrate that under dif-
ferent conditions it does prove beneficial to bin the
baseline-score feature.

4.2.1 Conditional Log-Probability Bins

The first method that we explore for quantizing
the baseline-score is to simply define a set of bins4

and assign each candidate to a bin according to the
baseline-score for that candidate. In our case, this
straightforward quantization is complicated by the
fact that the log probability scores output by the
Charniak baseline parser are not normalized, and
thus are not comparable across different sentences.
The probability scores are also affected by sentence
length, such that the one-best candidates for short
sentences have greater probability according to the
parsing model than the one-best candidates for long
sentences. Thus, we conditionally normalize the log
probabilities output by the parser before quantizing
into bins.

4.2.2 Rank Bins

Another method for quantizing the baseline-score
is to use the rank of a candidate as its score. The
benefit of using the rank as a feature is that rank is
comparable across sentences, thus there is no need
for normalization. For this paper, we treat the rank
of a candidate as a binned feature, i.e. with a sep-
arate feature defined for each bin. There are sev-
eral options for defining the boundaries of the bins
for such a feature, including linearly dividing the
ranks into equally-sized bins, and exponentially di-
viding the ranks such that the lower ranks are placed
into larger bins and higher ranks are spread more
sparsely across the bins. However, in this paper
we simply investigate the straightforward method of
defining a separate bin for each rank value.

4The pre-determined number of bins and the boundaries of
each bin may affect performance, though such details are out-
side the focus of this paper. In the following experiments we
arbitrarily selected the values of these parameters.

Technical Report 4 CSLU-08-001

Score Parser Baseline Scaling Empirical Binned Binned
Output Factor Optim CLP Rank
CJ05 88.9 90.2 90.2 90.4 90.2

Baseline System Score HR07 89.4 90.3 90.7 90.6 90.5
MCJ06 90.2 90.9 91.0 91.1 90.8

Table 1: F-scores on WSJ section 24 of reranker-best parses where the weight for the baseline-score feature was either
learned using the de-facto standard method (Scaling Factor), empirically optimized on held aside data (Empirical
Optim), or quantized into bins by Conditional Log-Probability (CLP), or Rank.

We could also create a scalar feature to represent
the rank values, i.e. by defining a single feature for
the rank score, and multiplying the learned weight
of the feature by the rank value of the candidate.
We did explore this option briefly, but found simi-
lar problems to using the baseline-score as a scalar
feature, namely that a linear function is inadequate
for weighting such a feature.

5 Experimental Setup

Throughout this paper we will be using the well-
known Charniak and Johnson (2005) parser and
reranker, with the feature set described in that pa-
per. We replicate three different experimental con-
ditions. First, we replicate the experimental setup
described in Charniak and Johnson (2005), follow-
ing what has become the de-facto standard of pro-
ducing 50-best parse candidates from the parser.
Second, we replicate the self-training experiments
in McClosky et al. (2006). We report on just the
best-performing setup from that paper, namely re-
training the parser on the reranker-best parses on
the North American News Text Corpus (NANC),
mixed with five copies of sections 02-21 of the WSJ
Treebank (reported as “WSJx5+1,750k” in that pa-
per). Finally, we reproduce one of the experimen-
tal conditions in Hollingshead and Roark (2007) by
constraining the Charniak context-free parser with
base phrases output by a finite-state parser (Holling-
shead et al., 2005), then taking the union of the two
n-best lists produced by the parser under the un-
constrained and constrained conditions (reported as
“Unconstrained∪FS-Constrained” in that paper). As
mentioned in Section 1, these final two experimental
conditions were chosen for this paper because under
these conditions, using the de-facto standard rerank-
ing procedures, the output of the reranker underper-
forms expectations despite significant improvements

in the baseline-parser candidates.
These three experimental conditions each repre-

sent a method of producingn-best parses, which we
will refer to in experimental results as CJ05 (Char-
niak and Johnson, 2005), MCJ06 (McClosky et al.,
2006), and HR07 (Hollingshead and Roark, 2007),
respectively. We then train three MaxEnt reranker
models, under a crossfold validation scenario, on the
n-best lists produced under each of these conditions.
Crossfold validation (20-fold with 2,000 sentences
per fold) was used to train the reranking models. In
all cases, WSJ section 00 was used as heldout data
and section 24 as our development set. Unless stated
otherwise, all reported results will be the F-score of
WSJ section 24. Evaluation was performed using
evalb under standard parameterizations. All sta-
tistical significance tests were conducted using the
stratified shuffling test (Yeh, 2000).

6 Results: Baseline System Score

Table 1 presents the results of using our four func-
tions to derive features for learning a reranking
model from the baseline system score. The Baseline
column shows the F-score accuracy of the baseline-
best parse candidate, and the Scaling Factor col-
umn shows the F-score accuracy of the reranker-best
parse candidate using the de-facto standard method
of learning a feature weight for the baseline score
within the reranking model.

Empirical optimization, where we withheld the
baseline-score from the learned reranking model
and empirically optimized the feature weight on our
heldout set (WSJ 00) after training, provides the
largest improvement on the HR07 parser output with
an absolute increase of 0.4 F-score from the default
method of learning a linearly-scaled weight for the
baseline-score, which is a statistically significant im-
provement (p < 0.05). There is no change in the

Technical Report 5 CSLU-08-001

Scoring Metric Parser Baseline Scaling Empirical Binned Binned
Output Factor Optim CLP Rank
CJ05 89.4 90.1 90.2 89.6 90.6

Pairwise F-score HR07 89.4 90.1 90.7 89.8 90.3
MCJ06 90.4 90.5 91.0 90.1 90.8

CJ05 89.4 90.5 90.2 89.9 90.6
Pairwise D-score HR07 89.5 90.4 90.8 89.9 90.4

MCJ06 90.4 90.9 90.9 90.6 90.9

Table 2: F-scores on WSJ section 24 of reranker-best parses where candidates were re-scored and re-ordered by
pairwise F-score or D-score comparison values. The feature weight for these scores was either learned using the
default method (Scaling Factor), where the feature weight was empirically optimized on held aside data (Empirical
Optim), or using one of two methods to quantize the score (Binned Conditional Log-Probability (CLP), and Binned
Rank).

F-score for the CJ05 parser output, though at least
the empirical optimization does not harm accuracy
of the learned reranking model. The F-score on the
MCJ06 parser output improves slightly from 90.9
for the default method to 91.0 under empirical op-
timization.

Our two methods for quantizing the baseline-
score feature improve over the scaling factor method
under some circumstances. By normalizing the log-
probability scores and binning, the F-score of the
reranker output improves for all three of our base-
line parsers: CJ05 and MCJ06 improve very slightly,
with a 0.2 increase in F-score above the default
method; HR07 shows a slightly larger improvement
with a 0.3 absolute increase in F-score. Using the
rank of each candidate as a binned feature is less ef-
fective, providing no increase in F-score for CJ05, a
smaller improvement of 0.2 F-score for HR07, and a
marginal decrease in F-score for MCJ06, from 90.9
to 90.8.

These results show that the function chosen to de-
rive a reranking feature from the baseline-score can
noticeably impact reranker performance.

7 Results: Pairwise Comparison Scores

The experimental setup for these results is identical
to the previous results, as described in Section 5.
The pairwise comparison scores may exhibit simi-
lar behavior to the baseline system score in terms
of down-weighting, quantizing, and under-training
other features in the model, thus we again apply our
four function for deriving features from the scores
to these two pairwise scoring metrics. The score fea-

tures are either treated as scalar features, empirically
optimized on a heldout set, or binned by normalized-
value or absolute rank.

Table 2 shows the results of using each of our two
pairwise comparison metrics as a feature in a rerank-
ing model. One interesting result can be seen by
comparing the Baseline scores here to the Baseline
scores in Table 1, which we discuss further in Sec-
tion 8

The different effects of the two pairwise metrics
on the reranking model can be seen most clearly
under the default method (Scaling Factor) of train-
ing a linear weight for the score feature. Using the
pairwise F-score as the candidate score results in
decreased accuracy across the board in comparison
to learning a scaling factor on the baseline system
score (Table 1): CJ05 drops by 0.1 F-score, HR07 by
0.2, and MCJ06 by 0.4. In contrast, using the pair-
wise D-score as the candidate score results in nearly-
universally increased accuracy: CJ05 increases by
0.4 F-score and HR07 by 0.1, although MCJ06 re-
mains the same as using the baseline system score.

Surprisingly, the method of normalizing the score
then quantizing into bins is actually detrimental
when using either of the pairwise comparison met-
rics in comparison to the baseline system score. Fur-
thermore, the reranker-best F-score on the MCJ06
parser output is actually lower than the parser-best
F-score under this condition. We suspect that the
pairwise scores were not equally spread across the
defined bins; candidates in ann-best list tend to be
highly similar and thus will tend to score closer to
one than zero, which was not taken into account

Technical Report 6 CSLU-08-001

when we defined the bin boundaries.
Unsurprisingly, given the improved rank-order

accuracy of the pairwise metrics, the reranking mod-
els trained with the binned rank of the candidate as a
feature performed well. Both the CJ05 and MCJ06
parser outputs showed an increase in reranker-best
F-score when using either of the two pairwise met-
rics to rank the candidates in comparison to using
the candidate rank derived from the baseline system
score. HR07 provides an small exception, showing
a slight decrease in F-score when using the pairwise
metrics rather than the baseline system score.

We also experimented with learning a reranking
model with all three scoring metrics, along with the
different methods for learning the feature-weights
for the scores, but ultimately did not see a notice-
able difference from using just one of the scores as a
feature, perhaps indicating that the different scoring
metrics do not provide complementary information
in a reranking model.

Interestingly, there was no clear winning function
and scoring-metric. Instead, the “best” choice of
function and score differed according to the dataset
being reranked. The bolded entries in Tables 1 and 2
indicate the highest-accuracy results found for each
of the three datasets: CJ05 performed best using
the Binned Rank function on either the pairwise-
F score or the pairwise-D score; HR07 performed
best with empirical optimization on the pairwise-D
score; and MCJ06 performed best using the Binned
Conditional Log-Probability on the baseline system
score. Thus, our conclusion from these results is
that, since the effectiveness of using any function
to derive reranking features from any baseline score
will vary across different datasets, best-practices for
reranking might do well to consider a range of func-
tions and scores rather than arbitrarily using the cur-
rent de-facto standards.

8 Alternate Accuracy Evaluations

The empirical results presented in this paper have
focused on improving, or better understanding, the
performance of reranking models as influenced by
features derived from some type of candidate score.
In this section we take a brief side-excursion to
look more directly at the accuracy of these candidate
scores, i.e. ignoring, for the moment, their effective-

ness as features in reranking.
Note that either of our pairwise comparison met-

rics may effect a total re-ordering of the list; the top-
ranked candidate will be the one that is most simi-
lar to all other candidates in the list, which may or
may not be the same as the top-ranked candidate ac-
cording to the baseline-scoring. While candidate-
order will not affect reranker performance, we can
determine whether the one-best candidate according
to each of our metrics is improved over the one-best
candidate according to the baseline system score. In-
deed, by comparing the second column (Baseline)
of Tables 1 and 2, we can see that either of the
pairwise metrics improves over the baseline system
score. The improvements for HR07 and MCJ06 are
small, from 0.1-0.2 F-score, but CJ05 is significantly
improved by 0.5 absolute F-score.

8.1 Rank-Order

As previously mentioned, we wished to examine the
effects of changing the relative ranking of candidates
input to the reranking model. Figure 1 shows the ac-
curacy of each of our three scoring metrics against
the true rank of the candidate for each of our three
parser outputs. In each graph in Figure 1, the cir-
cles represent the average candidate-rank as derived
from the log-probability scores output by the base-
line parser, and the triangles and squares represent
the average candidate-rank as derived from the pair-
wise F-score and pairwise D-score comparisons, re-
spectively. Note that although the lines represent-
ing the pairwise comparisons appear nearly identi-
cal, they do in fact differ on about 20% of the data
points. As can be inferred from the graphs, both of
the pairwise metrics come closer to the true ranking
(shown as a dotted line along the diagonal), and thus
more closely approximate the true candidate ranking
than does the log-probability score. Also, the pair-
wise metrics appear to more accurately rank the can-
didates in the bottom half of then-best lists. How-
ever, none of the three scoring metrics are signifi-
cantly more accurate in determining the best-ranked
(one-best) candidate.

We can take a more exact measurement of rank-
order accuracy by calculating a margin between the
rank value assigned by each of our three scoring
metrics and the true rank value of each candidate.
Let i equal the true rank value of the candidate, as

Technical Report 7 CSLU-08-001

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

True Rank

A
ve

ra
ge

 B
as

el
in

e−
sc

or
e

R
an

k

CJ05 Rank−order Accuracy on WSJ 24

True rank−order
LogProb
Pairwise F
Pairwise D

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

True Rank

A
ve

ra
ge

 B
as

el
in

e−
sc

or
e

R
an

k

HR07 Rank−order accuracy on WSJ 24

True rank−order
LogProb
Pairwise F
Pairwise D

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

True Rank

A
ve

ra
ge

 B
as

el
in

e−
sc

or
e

R
an

k

MCJ06 Rank−order Accuracy on WSJ 24

True rank−order
LogProb
Pairwise F
Pairwise D

CJ05 HR07 MCJ06

Figure 1: Rank-order accuracy produced by re-ordering then-best candidates according to the log-probability score,
pairwise F-score, and pairwise D-score of each candidate; pairwise F-score and D-score lines appear to overlap in
these graphs. Compares candidate rank, as determined by one of the three baseline-scores, against the true rank of
each candidate (dotted black line).

calculated by evaluating each candidate against the
known true solution then ranking the candidates ac-
cording to F-score, andj equal the rank of the candi-
date as derived from each of our three scoring met-
rics. We can follow Shen and Joshi (2005) by calcu-
lating evenanduneven margins. Even marginsare
calculated as(i− j), such that ranking mistakes are
equally penalized regardless of the rank value; thus
ranking the second candidate as the third is as bad as
ranking the 49th candidate at the 50th.Uneven mar-
gins are calculated as(1/i − 1/j) so that errors in
the lower ranks are not penalized as heavily as errors
in the higher ranks.

Using the baseline system score as a reranking
feature results in an even margin of 744 and an un-
even margin of 6.7 on WSJ section 24. In compari-
son, using either of the pairwise scores as the rerank-
ing score feature results in an even margin of 467
and an uneven margin of 6.3, demonstrating that,
indeed, both the pairwise F-score and D-score pro-
vide a more accurate ranking than the parser log-
probability score.

9 Conclusion & Future Work

In this paper we have shown that different levels
of reranker performance can be obtained by alter-
ing the functions for deriving the baseline system
score as a feature in the reranking model. By us-
ing characteristics of the list itself to re-score and
re-order candidates within the list, we demonstrated
that scores which better capture the relative differ-

ences between candidates can provide utility in a
reranking model. The methods presented herein,
for deriving candidate scores and learning feature-
weights for these scores, provide several additions
to current-best practices for training reranking mod-
els.

In our future work, we intend to pursue differ-
ent methods for empirical optimization within the
reranking framework. We also plan to explore dif-
ferent options for representing baseline score fea-
tures, such as adding a non-linear representation of
the score as a feature in the linear reranking model.

Technical Report 8 CSLU-08-001

References

A. Bernal, K. Crammer, A. Hatzigeorgiou, and F. Pereira.
2007. Global discriminative learning for higher-
accuracy computational gene prediction.PLoS Com-
putational Biology, 3.

Eugene Charniak and Mark Johnson. 2005. Coarse-to-
finen-best parsing and MaxEnt discriminative rerank-
ing. In Proceedings of the 43rd Annual Meeting of
the Association for Computational Linguistics (ACL),
pages 173–180.

Michael Collins, Murat Saraclar, and Brian Roark.
2005. Discriminative syntactic language modeling for
speech recognition. InProceedings of the 43rd Annual
Meeting of the Association for Computational Linguis-
tics (ACL).

Michael Collins. 2000. Discriminative reranking for nat-
ural language parsing. InProceedings of the 17th In-
ternational Conference on Machine Learning (ICML).

J. Fiscus. 1997. A post-processing system to yield re-
duced word error rates: Recognizer output voting er-
ror reduction (ROVER). InProceedings of the IEEE
Workshop on Automatic Speech Recognition and Un-
derstanding.

V. Goel, S. Kumar, and W. Byrne. 2000. Segmental min-
imum Bayes-risk ASR voting strategies. InProceed-
ings of ICSLP, pages 139–142.

Kristy Hollingshead and Brian Roark. 2007. Pipeline it-
eration. InProceedings of the 45th Annual Meeting of
the Association for Computational Linguistics (ACL),
pages 952–959.

Kristy Hollingshead, Seeger Fisher, and Brian Roark.
2005. Comparing and combining finite-state and
context-free parsers. InProceedings of the Human
Language Technology Conference and the Conference
on Empirical Methods in Natural Language Process-
ing (HLT/EMNLP), pages 787–794.

Ming Li, Xin Chen, Xin Li, Bin Ma, and Paul Vit̀anyi.
2004. The similarity metric.IEEE Transactions on
Information Theory, 50.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beat-
rice Santorini. 1993. Building a large annotated cor-
pus of English: The Penn Treebank.Computational
Linguistics, 19:313–330.

David McClosky, Eugene Charniak, and Mark Johnson.
2006. Effective self-training for parsing. InProceed-
ings of the HLT-NAACL Annual Meeting, pages 152–
159.

Franz Josef Och and Hermann Ney. 2004. The align-
ment template approach to statistical machine transla-
tion. Computational Linguistics, 30.

Brian Roark, Murat Saraclar, and Michael Collins. 2007.
Discriminative n-gram language modeling.Computer
Speech and Language, 21:373–392.

Izhak Shafran and William Byrne. 2004. Task-specific
minimum Bayes-risk decoding using learned edit dis-
tance. InProceedings of the 8th International Con-
ference on Spoken Language Processing (ICSLP), vol-
ume 3, pages 1945–48.

Libin Shen and Aravind K. Joshi. 2005. Ranking and
reranking with perceptron.Machine Learning, Special
Issue on Learning in Speech and Language Technolo-
gies, 60.

Libin Shen, Anoop Sarkar, and Franz Och. 2004. Dis-
criminative reranking for machine translation. InPro-
ceedings of the HLT/NAACL Annual Meeting.

Charles Sutton, Michael Sindelar, and Andrew McCal-
lum. 2006. Reducing weight undertraining in struc-
tured discriminative learning. InProceedings of the
HLT/NAACL Annual Meeting, pages 89–95.

Alexander Yeh. 2000. More accurate tests for the statis-
tical significance of result differences. InProceedings
of the 18th International COLING, pages 947–953.

Peter N. Yianilos. 1991;2002. Normalized forms for two
common metrics. Technical report, NEC Research In-
stitute.

Technical Report 9 CSLU-08-001

