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Abstract

In this paper Discriminative Language Models (DLMs) are ap-
plied to the Turkish Broadcast News transcription task. Turkish
presents a challenge to Automatic Speech Recognition (ASR)
systems due to its rich morphology. Therefore, in addition
to word n-gram features, morphology based features like root
n-grams and inflectional group n-grams are incorporated into
DLMs in order to improve the language models. Various feature
sets provide reductions in the word error rate (WER). Our best
result is obtained with the inflectional group n-gram features.
1.0% absolute improvement is achieved over the baseline model
and this improvement is statistically significant at p<0.001 as
measured by the NIST MAPSSWE significance test.
Index Terms: discriminative language modeling, speech recog-
nition, agglutinative languages

1. Introduction
Discriminatively trained conditional models, such as Condi-
tional Random Fields (CRF) [1] and Maximum Mutual Infor-
mation Estimation (MMIE) [2], have been applied success-
fully to both acoustic modeling [3] and language modeling
[4, 5, 6] for ASR. These sequence modeling approaches have
been demonstrated to consistently outperform generative mod-
eling approaches, partly due to improved parameter estimation
and partly due to the ease with which very many overlapping
features can be included in the models. Feature based language
models allow for easy integration of relevant knowledge sources
such as syntactic and semantic dependencies [5, 7, 8].

In this paper DLMs are applied to the Turkish Broadcast
News (BN) transcription task. Turkish presents a challengeto
ASR systems due to its rich morphology. Previous work on
Turkish ASR has focused on using sub-word units for language
modeling [9, 10, 11] to alleviate the data sparseness and out-of-
vocabulary (OOV) problems that plague word-based systems
in agglutinative languages. In this work our aim is to incor-
porate morphological information to the word-based language
model and also to take advantage of discriminative training.
Therefore, we use word based generative language models in
the first pass and attempt to incorporate morphological infor-
mation via features in DLMs in the second pass. Morphological
features have been incorporated into discriminative framework
for Czech ASR [12]. Turkish, being an agglutinative language,
contains variable number of morphemes, typically 3-4 including
the stem [13], which leads to new methods for defining features
from morphological glosses, as outlined in this work.

The paper is organized as follows. In Section 2 we present
the baseline ASR system. Section 3 gives a summary of DLMs.
Experimental setup and results are presented in Sections 4 and
5 respectively. Finally, Section 6 discusses the results.

2. Baseline ASR System
In this study approximately 107 hours of Turkish Broadcast
news data is used [14]. This data is partitioned into training
(100.4 hours), held-out (3.2 hours) and test (3.1 hours) sets. The
training data, held-out and test sets are disjoint in terms of the
dates of the selected shows.

For the acoustic models, 13 dimensional Perceptual Linear
Prediction (PLP) features are extracted using 16kHz acoustic
data. Cepstral mean normalization for each speaker is com-
puted and every normalized 9 consecutive cepstral frames are
spliced together. Then, those frames are projected to 40 dimen-
sional features by Linear Discriminant Analysis (LDA). Since
in Turkish, each letter approximately corresponds to a phoneme,
the acoustic models are based directly on letters (29 letters and
1 silence model). Context Dependent (CD) pentaphone models
are trained with Maximum Likelihood (ML) training with em-
bedded Semi-Tied Covariance (STC) re-estimation. The total
number of HMM states and gaussians are set as 2800 and 60000
respectively. Vocal Tract Length Normalization (VTLN) and
Speaker Adaptive Training (SAT) are applied to compensate for
speaker variations. For SAT, feature space Maximum Likeli-
hood Linear Regression (FMLLR) transforms are computed for
each speaker. Then, these transforms are used in ML training
of the acoustic models. In decoding FMLLR-adapted features
and Maximum Likelihood Linear Regression (MLLR) adapted
models are used. Acoustic models are trained with IBM’s soft-
ware tools [15].

For baseline generative language modeling, we have used
text corpora of 96.4M words collected from the web and the
reference transcriptions of the acoustic data (500K words). The
most frequent 50K words from the corpora are selected as
the vocabulary items and this gives 8.7% OOV rate over the
test data. Trigram word-based language models with modified
Kneser-Ney smoothing are generated using the SRILM toolkit
[16]. Language models are linearly interpolated in order tore-
duce the effect of out-of-domain data. Interpolation constants
are optimized over the held-out set Word Error Rate (WER).

The recognition task is also performed with IBM’s software
tools. The recognition results after various speaker compensa-
tion transforms are given in Table 1. In the DLM experiments,
we only used the output of the CD decoding since it will be
computationally expensive to generate the DLM training data
for all the acoustic models. Our baseline system with CD acous-
tic models yields 33.3% WER over the held-out set and 31.1%
WER over the test data.

Table 1: Recognition Results in terms of WERs
Acoustic Models

CD VTLN SAT
Heldout Data 33.3 32.4 29.5

Test Data 31.1 29.4 26.9



3. Discriminative Language Modeling
DLM is a complementary approach to the existing baseline lan-
guage model. In contrast to the generative language model, it
is trained on acoustic sequences with their transcripts to opti-
mize discriminative objectives using both positive (correct ut-
terances) and negative (recognition errors) examples. DLM
training data consists of lattices or N-best lists. The feature vec-
tor, Φ(x, y), is defined as a function of the acoustic input,x,
and the candidate hypothesis,y. ᾱ is the vector of parameters
associated with the features. The candidate hypothesis which
maximizes this inner product,Φ(x, y) · ᾱ, is the best scoring
hypothesis under this model. The parameter values are esti-
mated during training andy that maximizes the inner product is
searched for in the decoding.

The DLM training data (lattices or N-best lists) is gener-
ated by breaking the training data intok folds, and recognizing
the utterances in each fold using the baseline acoustic model
(trained on all of the utterances) and an n-gram language model
trained on the otherk−1 folds to alleviate over-training of the
language models. Acoustic model training data is not typically
controlled in the same way since baseline acoustic model train-
ing is far more expensive and less prone to over-training than
standard n-gram language model training [6].

The first element of the feature vector,Φ0(x, y), is defined
as the “log-probability of x, y in the lattice produced by the
baseline recognizer”. This feature will present the effectof our
baseline acoustic and language models to the DLM training.
Other features are defined as the number of times a particular
n-gram is seen in the candidate hypothesis.

The feature parameters,̄α, are learned discriminatively
from the labeled training examples. Either the perceptron al-
gorithm or Global Conditional Log-Linear Models (GCLMs)
can be used for learning these parameters. The perceptron algo-
rithm penalizes features associated with the current 1-best hy-
pothesis, and rewards features associated with the gold-standard
hypothesis (reference or lowest-WER hypothesis). GCLMs, in
contrast, use the ASR system output to calculate feature gradi-
ents so as to iteratively maximize the conditional likelihood of
the gold-standard hypotheses. See [6] for an overview of the
approaches.

4. Experimental Setup
In our experiments, first DLM training data is generated. Then
features are extracted from the training data and the parame-
ters of these features are updated using the perceptron algorithm
[17] and an n-best reranker with a regularized conditional like-
lihood objective1 [18]. Our experimental set-ups are based on
the findings of the previous research on DLMs [6]: (i) k-fold
cross validation is applied in DLM training data generation; (ii)
the oracle hypothesis is selected as the gold standard instead of
the reference; (iii) N-best lists are used instead of lattices.

4.1. DLM Training Data

In this research, only the language model training is controlled
via 24-fold cross validation. The same vocabulary and the in-
terpolation constant optimized for the baseline ASR systemare
used for those language models. In our experiments, N-best lists
(50-best and 1000-best) are utilized instead of lattices asthe
DLM training data. The lattice, 1000-best and 50-best oracle
error rates reported as 17.4%, 21.2% and 24.5% respectively.

1Reranker [18] is used as a tool for GCLM training.

4.2. Feature sets for Turkish

Turkish has an agglutinative morphology where many new
words can be derived from a single stem by addition of sev-
eral suffixes. Thus, in our experiments, we have also used fea-
ture sets that take the morphological characteristics of Turkish
into account. In the morphological analysis [19], we have a
rich set of morphological features such as major root Parts of
Speech (PoS), minor PoS, derivation boundaries and morpho-
logical tags. The ambiguity in the words with multiple morpho-
logical analysis is solved using a perceptron-based morpholog-
ical disambiguation tool for Turkish [20].
Phrase:sunulacak bildiridekiler (those in the paper that will

be presented)

Morphological Analysis:
sun(present)+Verb+ D̂B +Verb+Pass+Pos
+ D̂B +Adj+FutPart+Pnon
bildiri(paper)+Noun+A3sg+Pnon+Loc+ D̂B +Adj+Rel
+ D̂B +Noun+Zero+A3pl+Pnon+Nom
Inflectional Groups:
root(sunulacak)=sun(present)
IG1(sunulacak)=+Verb
IG2(sunulacak)=+Verb+Pass+Pos
IG3(sunulacak)=+Adj+FutPart+Pnon
root(bildiridekiler)=bildiri(paper)
IG1(bildiridekiler)=+Noun+A3sg+Pnon+Nom
IG2(bildiridekiler)=+Adj+Rel
IG3(bildiridekiler)=+Noun+Zero+A3pl+Pnon+Nom

Figure 1: Example morphological analysis for features

In the example in Figure 1, morphological feature se-
quences are separated byD̂B symbol which denotes the deriva-
tion boundaries. These sub-lexical units are called the Inflec-
tional Groups (IGs). The words in the example are analyzed
as a root and a sequence of 3 IGs. In this paper, we have used
word, root and IG-based n-grams as our feature sets. Special
emphasis is given to IG-based features.

4.2.1. Word n-gram features

All the word unigrams and bigrams seen in the N-best list are
used as word n-gram features. For instance:

Φj(x, y) = Number of times “sunulacak bildiridekiler” is
seen iny

4.2.2. Root n-gram features

All the root n-grams, up to 2, seen in the N-best list are used as
root n-gram features. For instance:

Φj(x, y) = Number of times “sun bildiri” is seen iny

4.2.3. IG-based n-gram features

As was shown in Figure 1, a Turkish word can be represented as
a root and a sequence of IGs. In dependency parsing and mor-
phological disambiguation tasks of Turkish, IGs have a com-
mon usage to handle the challenges introduced by the aggluti-
native nature of Turkish. It has been found that the last IG ofa
word determines its role as a dependent and the syntactic rela-
tions are between the last IG of the current word and one of the
IGs of the word on the right [21]. In addition, using IG-based
features in a discriminative framework gives the best accuracy
for the Turkish morphological disambiguation and PoS tagging
tasks [20].

In this research, IGs are also used in DLMs to optimize the
WER of the decoder. Each word in the DLM training data is



Table 2: n-gram features used in the DLM experiments. These features are extracted from an N-best utterance composed ofm words.
n-grams Features index ranges

Word n-grams unigrams (wi) 1 ≤ i ≤ m

bigrams (wi−1, wi) 2 ≤ i ≤ m

Root n-grams unigrams (ri) 1 ≤ i ≤ m

bigrams (ri−1, ri) 2 ≤ i ≤ m

IG-based (SET1) unigrams (ri), (IGi,j) 1 ≤ i ≤ m and1 ≤ j ≤ ni

n-grams bigrams (ri−1, ri), (ri−1, IGi,j), (IGi−1,k, ri), (IGi−1,k, IGi,j) 2 ≤ i ≤ m, 1 ≤ k ≤ ni−1 and1 ≤ j ≤ ni

IG-based (SET2) unigrams (ri), (IGi,j) 1 ≤ i ≤ m and1 ≤ j ≤ ni

n-grams bigrams (IGi−1,ni−1
, IGi,j) 2 ≤ i ≤ m and1 ≤ j ≤ ni

represented in terms of roots and IGs and the n-gram features
are extracted from this training data. The i’th word in an N-best
utterance is represented as

ri + IGi,1 + D̂B + ... + IGi,j + D̂B + ... + IGi,ni

whereri is the root of the i’th word (wi), ni is the number
of inflectional groups inwi andIGi,ni

is the last inflectional
group ofwi. IGi,j represents the j’th inflectional group ofwi

where1 ≤ j ≤ ni. If there arem words in an utterance, the
possible IG-based unigrams and bigrams from that utteranceare

1. Unigrams in a word: (ri), (IGi,j) where1 ≤ i ≤ m and
1 ≤ j ≤ ni.

2. Bigrams in consecutive words: (ri−1, ri), (ri−1, IGi,j),
(IGi−1,k, ri), (IGi−1,k, IGi,j) where2 ≤ i ≤ m,
1 ≤ k ≤ ni−1 and1 ≤ j ≤ ni.

In the example of Figure 1, there are one (ri−1, ri), three
(ri−1, IGi,j), three (IGi−1,k, ri), and nine (IGi−1,k, IGi,j)
bigram features. For instance:

Φj(x, y) = Number of times “IG3(sunulacak) IG2(bildiri-
dekiler)” is seen iny

Φk(x, y) = Number of times “root(sunulacak) IG3(bildiri-
dekiler)” is seen iny

The above features, all the possible unigrams and bigrams
seen in the N-best list, are used as the IG-based (SET1) n-gram
features in our experiments. We also try out reducing the num-
ber of bigram features by using a subset of the IG-based bi-
grams that may convey syntactic relations between the words.
This feature set is called the IG-based (SET2) n-gram features
and it contains all the unigrams and only the bigrams from the
last inflectional group of the previous word to all the inflectional
groups of the current word, (IGi−1,ni−1

, IGi,j), seen in the N-
best list. The word, root and IG-based n-gram features used in
our experiments are summarized in Table 2.

4.3. Parameter Estimation

In our experiments oracle best path is used as the gold stan-
dard. The perceptron algorithm (as presented in [6]) and the
conditional likelihood reranker (as presented in [18]) areused
for training the feature parameters. Due to computational limi-
tations, the reranker is only applied to the 50-best lists.

In the perceptron model, the parameter for the baseline
model, α0 (the weight associated withΦ0(x, y)), is set to a
fixed number and is not updated during training. We perform
two different training scenarios. In one scenario, 8 different
models are trained withα0 from 0 to 16. The best model is
chosen using the held-out set WER. In an alternative training
scenario,α0 is set to 0 during the training and then an opti-
mal mixing parameter between the baseline score and the DLM
score is chosen using the held-out set WER. Averaged percep-
tron parameters are used in the evaluation of the held-out and
test sets. The number of iterations over the training data are
also optimized on the held-out set.

5. Experimental Results
The DLM results for various unigram and bigram feature sets
are given in Table 3. The results are reported for the best it-
erations andα0 constants that yield the lowest WERs over the
held-out set. All the feature sets converged in 1-4 iterations of
the perceptron algorithm. In addition to the N-best perceptron
results, WERs with the reranker are also given.

Although, oracle WERs differ significantly, 21.2% for
1000-best and 24.5% for 50-best, increasing the N-best size
from 50 to 1000 does not give any significant difference on the
DLM performance, an observation noticed in other work on dis-
criminative training as well [22]. The number of active features
(features with non-zero weights) are comparably smaller than
the number of the initial features for all the feature sets. Even
though, 1000-best lists introduce approximately 5 times more
initial features than 50-best lists, the number of active features
are almost the same.

The perceptron model gives 0.5-0.9% WER reductions on
the test set and these reductions are statistically significant at
p<0.001 as measured by the NIST MAPSSWE significance
test. We also experimented with unigrams, bigrams and tri-
grams for the root, word and IG-based (SET1) n-gram features.
These new feature sets also improved the baseline performance,
however no significant performance improvement is achieved
compared to not using trigram features.

IG-based (SET2) n-grams reduced the number of IG-based
(SET1) initial features to 0.1M from 1.96M (94.9%) in 50-best
list and to 0.17M from 4.78M (96.4%) in 1000-best list with-
out effecting the performance of the perceptron model. In the
IG-based (SET1) experiments, we do not know the position of
the IGs in a word in the feature sets, since a particular IG may
occur at the end in one word and at the middle in an other word.
However, we found out that 15% of the (IGi−1,k, IGi,j) ac-
tive bigram features of the best IG-based (SET1) model over-
lapped with IG-based (SET2) bigrams, (IGi−1,ni−1

, IGi,j).
Although this finding does not lead us to the conclusion that
(IGi−1,ni−1

, IGi,j) is the most salient feature among all the
IG-based (SET1) bigrams, the importance of this feature is pro-
nounced in the IG-based (SET2) experiments which give the
same improvements with the IG-based (SET1) experiments,
however, with a comparably smaller set of features.

GCLM trained with unigram and bigram features on the
50-best list gives 0.5-1.0% improvement over the test baseline.
For the IG-based features, it performs slightly better thanthe
perceptron training. These improvements are also statistically
significant at p<0.001 as measured by the NIST MAPSSWE
significance test.

6. Discussion
As seen in Table 3, we do not observe any significant perfor-
mance difference between word and morphological features.
However, IG-based features seem more robust than the other



Table 3: DLM results. Feats represents the number of features
extracted from the N-best lists. Feats (Act.) represents the per-
centage of the features with non-zero weights after the parame-
ter training.

Feats Feats (Act.) WER WER
(millions) (%) held-out test

Baseline - - 33.3 31.1
Word n-gram features

Perceptron 50-best 2.08 13.3 32.6 30.5
Reranker 50-best 2.08 100.0 32.4 30.6

Perceptron 1000-best 7.18 4.2 32.5 30.5
Root n-gram features

Perceptron 50-best 1.04 14.4 32.6 30.6
Reranker 50-best 1.04 100.0 32.4 30.6

Perceptron 1000-best 2.83 6.7 32.5 30.5
IG-based (SET1) n-gram features

Perceptron 50-best 1.96 31.2 32.4 30.3
Reranker 50-best 1.96 100.0 32.3 30.1

Perceptron 1000-best 4.78 11.2 32.4 30.5
IG-based (SET2) n-gram features

Perceptron 50-best 0.10 43.0 32.4 30.4
Reranker 50-best 0.10 100.0 32.5 30.2

Perceptron 1000-best 0.17 27.4 32.4 30.2

features explored as the gains observed in the held-out set were
preserved in the test set. In order to understand whether there
is any real complementary information in the word and mor-
phological feature sets, we also trained models using “word
n-gram+root n-gram” and “word n-gram+IG (SET2) n-gram”
features together. However, for the first combined feature set,
we obtained the same test set error rate as when the feature sets
were used separately. For the second feature set, the test set
WER decreased to 30.2% for the 50-best list. To judge whether
this lack of observed additivity is an indication that no real ad-
ditive benefit can be expected, we performed a small cheating
experiment. Among the best scoring hypotheses of each fea-
ture set associated with the same utterance, we chose the one
with the lowest WER. This reduced the WERs to 29.3% and
28.9% for the above combined feature sets respectively. These
cheating experiments show that the effect of each feature set
can be additive. This additivity can be revealed if only the non-
overlapping discriminative features are trained together, for ex-
ample, using different factorizations of the tags, as in [12].

Future directions will include a key question raised by these
results. How can we effectively combine complementary fea-
ture sets to achieve the additive results that we should expect
based on our small cheating experiment? The current feature
sets represent one possible way of defining features from the
morphological analysis. We will continue to explore a range
of feature definitions that may achieve further improvements.
Moreover, sub-word-based language models are more appropri-
ate for the agglutinative languages and we will investigatethose
units in DLMs.

While the current results are preliminary, they do present
a promising direction for including morphological information
within a Turkish ASR system.
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