Deriving conversation-based features from unlabeled speech
for discriminative language modeling
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Abstract

The perceptron algorithm was used in [1] to estimate discrim-
inative language models which correct errors in the output of
ASR systems. In its simplest version, the algorithm simply
increases the weight of n-gram features which appear in the
correct (oracle) hypothesis and decreases the weight of n-gram
features which appear in the 1-best hypothesis. In this paper,
we show that the perceptron algorithm can be successfully used
in a semi-supervised learning (SSL) framework, where limited
amounts of labeled data are available. Our framework has some
similarities to graph-based label propagation [2] in the sense
that a graph is built based on proximity of unlabeled conversa-
tions, and then it is used to propagate confidences (in the form of
features) to the labeled data, based on which perceptron trains
a discriminative model. The novelty of our approach lies in
the fact that the confidence “flows” from the unlabeled data to
the labeled data, and not vice-versa, as is done traditionally in
SSL. Experiments conducted at the 2011 CLSP Summer Work-
shop on the conversational telephone speech corpora Dev04f
and Eval04f demonstrate the effectiveness of the proposed ap-
proach.

1. Introduction

The perceptron algorithm is a supervised learning algorithm,
which takes as input labeled data and learns a model that sep-
arates the data that belong to different classes [3]. The percep-
tron has more recently been used successfully in the area of lan-
guage modeling [1, 4], where it takes as input N-best lists from
an ASR or MT system and returns feature weights that re-rank
the IN-best lists with the goal of scoring the less-erroneous hy-
potheses higher. The features used in [1, 4] are n-grams; these
n-grams will necessarily have to have a non-negligible over-
lap between the training and the test data, to have some hope
that the learned model will be able to generalize. To improve
generalization, some additional features such as morphological,
syntactic and trigger features have been investigated across a
variety of languages and tasks [5, 6, 7, 8].

In this paper, we investigate the use of unlabeled audio and
its derivatives (word lattices) in order to guide the generation
of features. Despite the fact that the unlabeled audio cannot be
used in the perceptron algorithm directly (by virtue of the fact
that supervised transcriptions are missing), it can still provide
some form of well-formedness confidence estimates for the la-
beled data. Therefore, even if the n-gram overlap is small, there
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are still features which provide additional means of confidence
based on which the perceptron can learn to successfully re-rank
the n-best lists. Although our proposal falls in the category of
semi-supervised learning [9], it is different from the traditional
notion of confidence (or label) propagation; our novelty lies in
the fact that it is the unlabeled data which propagate their con-
fidences to the labeled data, and not vice-versa. To the best of
our knowledge, this is the first attempt at using unlabeled data
to decide on the relevance or well-formedness of alternative hy-
potheses in the output of an ASR system.

Our experiments from conversational telephone speech
(Dev04f and Eval04) show that the semi-supervised features
offer statistically significant improvements over a strong ASR
baseline, as well as a perceptron baseline which only uses 3-
gram features.

The paper is organized as follows: Section 2 contains a
description of the Perceptron algorithm: the original formula-
tion by F. Rosenblatt, as well as its modified formulation for
re-ranking problems in ASR and MT; Section 3 presents details
about the semi-supervised features that are derived using un-
labeled data; subsection 3.6 presents other features, including
supervised language model features; Section 4 presents our ex-
perimental setup and word-error-rate (WER) results, and finally,
Section 5 contains concluding remarks.

2. The Perceptron Algorithm

The perceptron algorithm was introduced by F. Rosenblatt in
the 60s, for learning single-layer neural networks [3]. The basic
idea is that, in the two-class separable case, one can learn an
“optimum” feature weight vector simply by going through the
training data and only updating the weight with those examples
that get misclassified. In algorithmic terms, assuming that w(t)
is the weight vector at time ¢, it is updated according to

if w(t)x;y; <0, then w(t+1) = w(t) + nxiys,

where 1) is the learning rate, and y; is the label (+1/—1) of the
training example x;.

In the context of discriminative language modeling for
ASR, following the approach of [10], [1] converted the problem
of re-ranking the output hypotheses (e.g., an n-best list) into
a multi-class problem: at each iteration of perceptron, the n-
best list is reranked according to the current perceptron weight
vector, and the weight vector is updated if the top-ranked hy-
pothesis is not the lowest-error hypothesis.

The perceptron algorithm for discriminative language mod-
eling is shown in Figure 1. Here, z; represents the i-th utter-
ance, GEN(z;) is the output space (set of possible candidates
generated for x; by the ASR system), and y; is the minimum-
WER (oracle) hypothesis in GEN(z;). (Alternatively, y; could



be the manual transcription associated with x;, but it turns out
that using the oracle leads to a more stable algorithm.) Further-
more, ®(x;, z) is the set of features associated with hypothesis
z € GEN(x;).

Inputs: Training examples (z;, ;)
Algorithm: Set w = 0
Fort=1...T
Fori=1...N
Calculate z; = arg max.cgen(z;) W - @ (24, 2)
If z; # y;, then update w = w+n(®(z;, y;) — D(x4, 2))
QOutput: Weight vector w

Figure 1: The perceptron algorithm for discriminative language
modeling used in [1], following [10].

In the approach taken in [1], only n-gram features were
used. This forms our baseline discriminative language mod-
eling condition. In the next section, we show how to augment ¢
with a richer set of “semi-supervised” features, extracted using
unlabeled data.

3. Features

In this section we describe the features that are derived using
unlabeled data, along with a few others (derived directly from
the n-best lists) that were used. In order to tackle the issue of
limited training data, and to make them complementary to the
baseline n-gram features used in perceptron, these “external”
features should satisfy criteria such as (i) they should be lim-
ited in number, to avoid overfitting; (ii) they should correlate
with (multiple, and hopefully diverse) notions of confidence.
To show in what sense our proposal is similar to graph-based
SSL, and to emphasize the differences, we briefly mention the
setup of graph-based confidence propagation SSL.

3.1. SSL with Graph-based Label Propagation

In the standard setup of graph-based label propagation [2], the
learner has a set of labeled data (z1,y1), ..., (2, y) as well
as unlabeled data z; 1, ..., , atits disposal. A graph is built
over labeled and unlabeled data, based on some notion of prox-
imity between data points. Next, “messages” are exchanged
between the nodes of the graph, where neighbors of a node x
encode their “belief” about the class label of . An alternative
view is to consider a random walk on the graph, which assigns
label probabilities to nodes based on the probability that the
walk will reach a node with one of the available labels. During
this process, the label proportions of the labeled nodes always
remain fixed, concentrated on the true labels [9].

Although we do generate graphs over the unlabeled data
that connect them to the labeled data, what we propose is not
the same as what is usually done in graph-based SSL [9]. Our
approach is going in the opposite direction: we want to use the
most relevant and confident unlabeled data to augment the fea-
tures of the labeled data, over which discriminative training is
applied. This is done by generating features over the n-best
hypotheses of the labeled data. If a hypothesis is close to suf-
ficiently many unlabeled data (or with sufficient strength) then
there is an indication that the hypothesis is probably less erro-
neous than a hypothesis which is not close to any unlabeled
data. Our assumption is that ASR errors occurring between
different hypotheses are uncorrelated, and thus spurious cases
of strong proximity to erroneous hypotheses are hopefully un-
likely.

The “semi-supervised” features explored in this section
encode various senses of proximity, relevance, or well-

formedness: (a) Tf-idf similarity features: measure how close
a hypothesis is to an unlabeled speech document; low proxim-
ity to all unlabeled speech documents is expected to correlate
with bad-formedness. (b) Topic-model features: measures how
relevant a hypothesis is to the topic distribution of the conver-
sation it belongs to. The assumption is that correct hypotheses
should be more likely than incorrect ones. (c) Clustering fea-
tures: measures coherence according to some clustering of the
unlabeled data. Combinations or words-clusters which appear
correctly in the n-best lists get rewarded, while combinations of
words-clusters which appear erroneously get penalized.

Details about these features are given in the rest of this sec-
tion. It is assumed that the unlabeled data are decoded with the
same recognizer used to decode the supervised data which train
the perceptron, as well as any other development or test data.
The decoded output consists of lattices (or confusion networks).

3.2. Quantized rank features

Before moving on to discussing the specific real-valued mea-
sures that we derive from the unlabeled data, we will first dis-
cuss our use of quantized rank indicators as the actual features
being used in the discriminative language model. For each mea-
sure F', we score each hypothesis h in the n-best lists with
F(h) and rank the n-best list according to the score. The
rank k is then used to define a boolean indicator feature, e.g.,
RANK.F=k. To avoid feature sparsity, we use quantized ranks,
i.e., rank intervals. The intervals near the top of the list are
shorter, to emphasize the higher ranks.

3.3. Tf-idf Similarity Rank Features

The lattices of the unlabeled data are used in order to compute a
vector representation of each conversation side. In the informa-
tion retrieval framework, a conversation side plays the role of a
“document”. Specifically, each conversation side is represented
by a vector, whose ¢-th entry is set equal to a measure of how
frequent the word is in the conversation side, discounted by a
factor that measures its frequency in the whole collection. A
similar representation can be used with other document defini-
tions.

Since each tf-idf vector is compared (using cosine distance)
to a single hypothesis, we follow [11] in using two definitions
of term-frequency, in order to reduce the influence of very fre-
quent words. In addition to typically defined term frequency, we
also use the probability of occurrence of a word in a document.
This is computed in a lattice by summing together the posterior
probabilities of paths which contain the word, and can be done
easily with FSM operations. These probabilities are then con-
volved together to give the probability of occurrence of a word
in a document. This measure of frequency is always bounded
above by 1.

Thus, we compute two #f quantities for word w in a doc-
ument c; the first contains the expected count in ¢, while the
second is the probability of occurrence in c:

1M (w) = Z Z n Pr(w appears n times in utt), (1)
utt€c n=1
and
P (w) = Pr(w appears > 1 times in c). (2)

The document frequency (df) component is then calculated
over the whole unlabeled corpus, generalizing directly to typical
document frequency calculation:

dftw) = > fP(w). 3)

ceu



The cosine similarity between a hypothesis h = (w1, ...,
wy) and an unlabeled document ¢ € U is then defined as

(tfidf(h), tfidf(c))
[[tfidf (h)]| - ||tfidf(c)|]

sim(h,c) =

“

where tfidf(h) is defined as a vector whose elements corre-
spond to the words of the decoding vocabulary and are equal to
tf(w) log(D/df(w)), where D is the total number of documents
in the unlabeled corpus. The notation (-, -) denotes vector inner
product, and || - || denotes vector norm.

The features computed for each hypothesis h are the aver-
age and maximum of the set of tf-idf similarities:

1 .

far” () = 5> sim(h,c), ®
ceUd

foa O (h) = max{sim(h,c)}eeu- ©)

This yields four features, since there are two versions of #f used
to compute each of these features. We further double these to
eight features by including versions of each that are multiplied
by the ratio |h|/(|h|+1), which is an increasing function of |h|,
as a means of penalizing very short hypotheses. All of these
features are converted to boolean indicator features based on
quantized ranks, as discussed in Section 3.2.

3.4. Topic-model Rank Features

The next set of features is computed using topic features. As de-
scribed above, expected counts are computed from the lattices
of the decoded audio and aggregated at the document (conver-
sation side) level. These expected counts are then used to gen-
erate “pseudo-documents” as bags of words (each word is sim-
ply repeated as many times as the expected count, rounded to
the nearest integer), based on which topic distributions are esti-
mated with the Mallet toolkit [12]. Excluding function words,
three different topic models are estimated, with 50, 100 and
200 topics respectively. Three more topic models are estimated
(with 50, 100, 200 topics again), but with function words in-
cluded.

Each topic ¢ represents a distribution over words p¢(w). To
assign a topic-based likelihood to a hypothesis, all hypotheses
of the conversation side it belongs to are first treated as a “doc-
ument”, based on which a distribution over topics ¢* (t) is esti-
mated: ¢* = argmax, Y, . log(>, q(t)p:(w)).

Next, given this estimate of topic proportions, the log-
likelihood of a hypothesis h is computed as

LL(h) =) log (Z 7" (H)pe (w)) :

wEh

This log-likelihood is then used to rank hypotheses, and results
in boolean indicator features based on quantized ranks, as dis-
cussed in Section 3.2. Six different log-likelihoods are used to
produce features in this way, corresponding to the 3 models with
different numbers of topics, each either with or without function
words.

3.5. Clustering Features

The next set of features is based on clusters over the unlabeled
audio documents. The pairwise similarity between all pairs of
documents is first computed using eq. (4) as the similarity mea-
sure. This generates a weighted graph, which is subsequently
thresholded such that only edges with a tf-idf similarity above 6

are kept. The resulting graph is then given as input to a cluster-
ing algorithm [13] which optimizes the normalized-cut objec-
tive function

k
NCut(G) = . mlan ; links(C;, V)

where U is the set of vertices (conversation sides) in the unla-
beled audio, C; is the set of vertices of the i-th cluster, and the
function links(A, B) is equal to the sum of the weights of the
edges between vertices in A and vertices in B.

New clustered “documents” are now created: the number
of words in each cluster is set equal to the sum of the expected
counts (given by eq. (1)) of its constituent documents. Two
values of 6 (0.21 and 0.25) gave rise to two sets of features.

For each hypothesis h, several symbolic features are gener-
ated as follows: for each word w in h whose dfis in the lowest
95% percentile (that is, function words are largely excluded)
all clusters C,, which contain the word are identified, and the
cosine similarity (4) between h and each C; € C, is com-
puted. The symbolic features are then formed by concatenating
together the identity of w and the identity of each cluster in C,,
which results in the largest tf-idf similarity (to avoid sparsity,
only the top 10% of the features are kept, over all w € h).

For example, if h contains the word river, then the gener-
ated features may look something like (river,c36), (river,c41),
etc.; this means that word river appears in clusters c36, c41,
and these clusters are similar enough (according to tf-idf co-
sine similarity) to h. What perceptron will do next during the
training, will be to weight these features according to the cor-
rectness of the words, in the context of their associated cluster.
That is, if river is wrong, then perceptron will learn that the
features (river,c36), (river,c41) should be assigned a negative
weight. Now, if river appears correctly in another utterance and
is associated with another cluster (say, c50), then perceptron
will increase its weight only in that context, without affecting
what was learned for (river,c36), (river,c41). This way, per-
ceptron will capture the positive/negative correlation that exists
between words and contexts they appear in, and thus improve
the lexical coherence of each utterance.

3.6. Other Features

In addition to the semi-supervised features, other features de-
rived from the n-best lists were used. Specifically:

e length: To make sure that hypotheses do not deviate too
much from the “centroid” of the lengths in a n-best list, two
“delta” features are computed for each hypothesis: the first
is the rank of the absolute difference between the length of
the hypothesis and the mean length in the n-best list, while
the second uses the median length instead of the mean.

e original rank: The original rank of a hypothesis is also used
as a separate feature.

o LM features: Nine language models, computed from a va-
riety of sources, are used to compute additional “supervised”
features. The nine sources were comprised of the supervised
transcripts of all 2000 hours, and the web data that were ob-
tained from UW [14]. In total, about one billion tokens were
used to generate these language models. The likelihoods of
the languages models (computed for all n-gram orders 1..5)
were again converted to ranks.

All of these ranks were quantized as presented in Section 3.2.

4. Experimental Results

All our experiments were done on conversational telephone
speech (CTS) corpora. A speech recognizer was trained on



2000 hours of speech using IBM’s attila speech recognition
software library [15]. The training data comprised roughly 1000
hours of conversations from the Fisher corpus, and another 1000
hours of conversations from the Switchboard and the Call Home
corpora. The same 2000 hours were decoded with the learned
acoustic model, but the decoding was done using 20-fold cross-
validated language models. Specifically, for each fold i, all
manual transcripts of the rest 19 folds (i.e., excluding fold ¢)
were pulled together to build a 5-gram language model that was
used to decode .

Four folds, amounting to roughly 337 hours, were used as
labeled data for training the various perceptron models. An-
other 15 folds, amounting to roughly 1545 hours, were used as
unlabeled data for generating the semi-supervised features.

A small held-aside fold (not included in the above) was
used as a stopping criterion for perceptron; the algorithm would
stop if the WER did not improve on it for 5 consecutive iter-
ations. The Dev04f corpus and the held-aside fold were used
with cross-validation, for tuning the scaling factor used in the
combination of the perceptron scores and the scores obtained
by the baseline recognizer, as well as deciding which set of fea-
tures to use on the test data. The Eval04f corpus was used as a
blind test corpus for reporting WER results.

Table 1 shows the WERs on the dev & eval datasets, for
three sets of features: (a) Plain 3-gram features (baseline per-
ceptron); (b) 3-gram features and the best unsupervised fea-
ture (original rank) only; (c) the best semi-supervised feature
set which does not contain the strong (supervised) language
model features, tuned on the held-out and Dev04f data using
cross-validation; (d) the best semi-supervised feature set which
contains the supervised language model features (mentioned in
Section 3.6), again tuned on the held-out and Dev04f data using
cross-validation. As can be easily seen from these results, the
semi-supervised features resulted in a significant improvement
over the baseline on the eval data (p < 0.01). Inclusion of the
language model features also resulted in a significant improve-
ment over the baseline perceptron (p < 0.05).!

5. Concluding Remarks

We have investigated the use of unlabeled audio for generat-
ing features that are given as input to a supervised discrimina-
tive algorithm for language modeling. These “semi-supervised”
features attempt to convey various notions of confidence: rele-
vance in terms of tf-idf cosine similarity, coherence as measured
by topic models, and as measured by proximity to (unsuper-
vised) clusters of the unlabeled audio. Results from conversa-
tional telephone speech transcription show that these features
offer statistically significant WER gains, even surpassing the
performance of strong language models trained on supervised
data.
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