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Abstract
Simulated confusions enable the use of large text-only corpora
for discriminative language modeling by hallucinating the likely
recognition outputs that each (correct) sentence would be con-
fused with. In [1], a novel approach was introduced to sim-
ulate confusions using phrasal cohorts derived directly from
recognition output. However, the described approach relied on
transcribed speech to derive cohorts. In this paper, we extend
the phrasal cohort technique to the fully unsupervised scenario,
where transcribed data are completely absent. Experimental re-
sults show that even if the cohorts are extracted from untran-
scribed speech, the unsupervised training can still achieve over
40% of the gains of the supervised approach. The results are
presented on NIST data sets for a state-of-the-art LVCSR sys-
tem.
Index Terms: unsupervised training, discriminative language
modeling

1. Introduction
A language model (LM) assigns probabilities to word se-
quences, and is an important component of automatic speech
recognition (ASR) systems. Standard LMs are usually parame-
terized as generative n-gram models. Training of such models
requires a text corpus and estimating a large set of conditional
n-gram distributions with the objective of maximizing the like-
lihood of the corpus. Because of the simple estimation proce-
dure and the abundance of text resources, such n-gram models
often can be trained at very large scales.

Despite the predominant use, generative LMs are not
trained to optimize the system performance measured by word
error rate (WER). Discriminative LMs (DLM), which directly
target the errors that the system produces, have been shown to
be able to achieve consistent gains over well-estimated genera-
tive n-gram models [2, 3, 4, 5]. Unlike generative LMs, train-
ing DLMs usually requires more than just clean text. In order
to identify the set of acoustically confusable hypotheses that the
recognizer outputs, we have to decode the speech corresponding
to the text. Once we obtain the set of competitors that the refer-
ence text is confused with, a global linear model can be trained
to maximize the likelihood ratio of the lowest-error hypothesis
to its set of competitors.

Unfortunately, transcribed speech data are usually expen-
sive to acquire. The amount of training data available for DLMs
can sometimes be quite limited for a lot of tasks. In contrast, it
is often much easier to obtain a large text corpus. In order to
apply discriminative language modeling in the absence of suf-
ficient transcribed data, a lot of work has focused on training
DLMs from only text resources. Typically, such approaches re-
quire modeling the ASR errors and simulating the confusion set

for discriminative training. The weighted finite state transducer
(FST) provides a flexible framework for this purpose. It allows
us to simulate different levels of ASR confusions successively.
Previous methods usually approach this problem by first mod-
eling the phonetic similarities [6, 7, 8, 9]. The transduction cost
from one phone to another can be estimated from the acoustic
model distance or phone recognition errors.

Recently in [1], the authors presented extensive experimen-
tal results comparing a number of confusion generation tech-
niques, including a new method that completely bypasses mod-
eling the phone-level confusions, which they called the phrasal
cohort method. Compared with phone-based techniques, the
cohort approach is more straightforward and has a simpler pro-
cedure of generating the confusion set. Empirically, they found
that among the three techniques they investigated, the phrasal
cohort method yields the largest WER gains, recovering over
half of the gains of the fully supervised methods.

This paper is intended as a detailed study of the phrasal co-
hort method and as a direct extension to [1], addressing two im-
portant issues not covered in that paper: First, the authors of [1]
assumed a set of transcribed speech data, from which phrasal
cohorts can be extracted. In such a semi-supervised scenario
where some transcribed data are available, the benefits of unsu-
pervised DLM are best evaluated on top of the supervised DLM
trained on the available transcribed resources. Instead of using
the cross-validation setup presented in [1], this paper will de-
scribe a new experimental setup in which such results can be
presented; Second, transcribed resources are not always attain-
able. As an example, if we move to a new domain, it is unlikely
that we have sufficient data to train supervised DLMs or ex-
tract phrasal cohorts. In this paper, we will extend the phrasal
cohort approach to the fully unsupervised setting, where the
phrase-level errors are estimated from untranscribed speech.
The proposed method is also a direct extension of the word co-
hort method described in [10]. We find that even in the absence
of transcribed data, the phrasal cohort method can achieve about
40% of the WER reduction of the supervised method. Such a
fully unsupervised approach is more promising than assuming
a transcribed corpus for learning the ASR errors. Because the
transcribed data may as well be used to build a supervised DLM
on top of which additional unsupervised training often leads to
no gains.

We want to point out that regardless of whether the cohorts
are derived from transcribed or untranscribed data, we consider
the DLMs to be unsupervised. Because they are estimated from
hallucinated confusion sets as opposed to real confusion sets in
the supervised case.

The rest of the paper is organized as follows: We describe in
section 2 the extraction of phrasal cohorts and how to use them
to train DLMs unsupervisedly. The baseline ASR system and



the data setup are described in section 3. Empirical results are
presented in section 4, followed by future work and conclusions
in section 5 and 6.

2. The Phrasal Cohort Approach
2.1. Extraction of phrasal cohorts

The cohort for a phrase p, as denoted by C(p), is defined as
the set of similar-sounding phrases that are potential erroneous
outputs where the correct transcription is p. Table 1 contains a
few examples of phrasal cohorts.

Table 1: Example of cohort

p C(p)
that to you that too you
<s> she <s> and she, <s> oh she

to you to be you

Such phrase-level transformation rules can be easily ex-
tracted from data. In cases where transcribed speech is avail-
able, we can align the reference string with each one of the ASR
hypotheses according to the edit distance. The number of hy-
potheses to align can be a hyper-parameter to tune. Every time
we find a position where the two strings differ, we search for the
left and right pivots, namely the nearest position where the two
strings agree. The phrases between the pivots give us a trans-
formation rule from the reference to the corrupted ASR output.
The extraction then continues from the next word to the right
pivot. Note that in the examples we show in the table, pivots are
also part of the phrases, thus they can be thought of as context
dependent rules.

In the fully unsupervised setting, we do not have access to
the reference string, phrasal cohorts can be extracted from each
one of the pair-wise alignments between the ASR hypotheses.
Below is an example of two hypotheses of the same utterance.

1-best: <s> what kind of a company is it </s>
2-best: <s> well kind of a company is it </s>

Following the same procedure described above, we can
identify the competing phrases “<s> what kind” and “<s>
well kind”. Since we do not know which phrase is correct, we
extract the transformation rules symmetrically. Specifically, we
have the transformation rule “<s> what kind —> <s> well
kind”, as well as “<s> well kind —> <s> what kind”.

Obviously, such symmetric modeling of the ASR errors is
much coarser. But constrained by the pivots, the two phrases
usually reflect some kind of confusions that exist in the ASR
system. It is therefore not unreasonable to expect one phrase in
the ASR output when the other is the correct transcript.

2.2. Hallucination of N -best List

Phrasal cohorts are essentially a set of transformation rules.
Whether they are derived from transcribed or untranscribed
speech, they can be used in the same way to hallucinate n-best
lists from text. As shown in Figure 1, given the reference string,
we first construct a confusion network using the phrasal cohorts
in Table 1. An LM is often used to score each path in the net-
work, the top n hypotheses are then extracted and used as the
simulated confusion set for discriminative training. Note that as
described in [1], the confusion network can also be weighted by

Figure 1: Construction of confusion network

the probability of each transformation rule, namely the proba-
bility of the correct phrase getting recognized to its erroneous
version. However, we have found that the use of such proba-
bilities does not have much impact. From untranscribed data,
where correctness of the phrase can not be determined, it is also
not straightforward to estimate such probabilities. Therefore, in
our experiments, we only use an LM to compose with the con-
fusion network, and the rule probabilities are not used for the
n-best extraction.

2.3. Local N -best Training

Hallucinating n-best lists using phrasal cohorts requires con-
structing confusion networks and extracting best-scoring paths
from them using an LM. This process usually involves FST
compositions and can be very time-consuming. To allow for
faster experiments and more detailed analysis of the approach,
we propose a much more efficient training strategy that does not
require the global n-best extraction.

Instead of building a confusion network, every time a
phrase p with non-empty C(p) appears in the training text, we
construct a set of competitors by putting each phrase in C(p)
in place of p with the rest of the sentence unchanged. In the
example of Figure 1, when we see the phrase “<s> she”, we
construct the below training instance, which can be thought of
as a local n-best list.

Ref: <s> she didn’t announce that to you </s>
1-best: <s> and she didn’t announce that to you </s>
2-best: <s> oh she didn’t announce that to you </s>

Note that in such local n-best lists, the cohort phrases are
not weighted by LMs or any other scores. However, in practice,
we have found that this approach generally gives more or less
the same results compared with the standard training strategy,
despite having a much simpler training pipeline. In this work,
we rely on this strategy to efficiently tune the various hyper-
parameters in our approach (e.g. length of phrases, depth of
n-best, order of features, ...). The final results are however, still
based on the global n-best extraction.

3. Data & Setup
Our experiments are conducted on the English conversational
telephone speech (CTS) dataset. We use the same state-of-the-
art baseline system as the one described in [1]. The acoustic
models are trained on 2000 hours of transcribed data. Please
refer to [1] for a detailed description of the acoustic models.
The baseline LM is a 4-gram LM trained on the transcript of
the 2000 hours and about 1 billion words of web text.

For training DLMs, the 2000 hours of transcribed speech
are divided into 20 folds. The 100-best list for each fold is pro-
duced using an LM trained on all the LM text excluding the
transcript of that fold. Such cross-decoding strategy is com-
monly used for discriminative language modeling [5]. The hope
is to remove the LM bias and that the confusions on each fold
would potentially resemble those on the test data.



For training unsupervised DLMs, we use the transcript of
8 folds, with a total of 10 million words as the training text
from which we hallucinate confusion sets. Their corresponding
speech and the real n-best hypotheses produced by the decoder
are set aside and never used. We also reserve another 8 folds of
data as the speech from which we extract phrasal cohorts. The 8
folds of speech amount to 690 hours and are used as either tran-
scribed or untranscribed data. The goal of our experiments is to
investigate the benefit of unsupervised discriminative language
modeling under various conditions of data availability (We will
investigate the conditions of 2, 4 and 8 folds for both text and
speech). Our results are reported on the NIST RT04 Fall devel-
opment and evaluation sets, consisting of 38K and 37K words
respectively.

4. Experimental results
4.1. Cohorts from Transcribed Speech

In this setting, we have access to the reference transcript of the
690 hours of speech. The phrasal cohorts are obtained by align-
ing the reference string with the 1-best hypothesis. Aligning
with more hypotheses in the n-best list does not seem to help.

We also tune the maximal length of the phrase on the cor-
rect side of the rule using the local training strategy. We find
that with the pivots included, length of more than 3 usually
does not bring further improvement. In other words, it is suffi-
cient to model only the insertion errors (length 2) and the errors
where one word gets falsely recognized as an arbitrary number
of words(length 3).

Keeping the pivots in the phrases proves to be advanta-
geous. Such context dependency not only results in larger WER
reduction, but also makes the training faster. Without the pivots,
we will have many transformation rules where the correct side
is a single word, and the number of training instances with the
local training strategy will become much larger.

After tuning the various properties of the phrasal cohorts,
we hallucinate the 100-best lists on the 8 folds of text using
the baseline LM. To train the DLMs, we use the standard av-
eraged perceptron algorithm with unigram, bigram and trigram
features. Going up to 4-gram features does not help much. After
each epoch of perceptron training, we compute the WER on the
development set, and the training stops when the WER does not
improve for 5 consecutive epochs. Note that the baseline score
(including the AM and the baseline LM score) is only combined
with the perceptron score at test time, and the mixing factors are
optimized on the development data.

Table 2 shows the WER results on the development set with
various amounts of LM text and transcribed speech. For the un-

Table 2: WER results with cohorts derived from transcribed
speech. 1-best WER: 22.8

Text\Speech 17h 35h 70h 133h 337h 693h
3M 22.5 22.4 22.3 22.2 22.4 22.3
5M 22.5 22.4 22.3 22.2 22.3 22.4
10M 22.5 22.4 22.4 22.3 22.3 22.2

Sup DLM 22.5 22.5 22.2 22.1 21.8 21.7

supervised DLMs, the amount of LM text does not appear to
have much impact, the best WER can be obtained using the
smallest LM corpus (3M) in our experiments. On the other
hand, increasing the amount of speech beyond a certain point

does not seem to help either. Our best WER can be obtained
with as little as 133 hours of speech.

The bottom row of the Table 2 shows the WER of su-
pervised DLMs trained on the transcribed data. As we can
see, assuming such a set of transcribed speech, we can train
a supervised DLM that gives us 1.1% absolute WER reduction
(21.7%). If we train a DLM unsupervisedly on the hallucinated
data using phrasal cohorts derived from the set of transcribed
speech, we can achieve 0.6% absolute WER reduction, recov-
ering more than half of the gains achieved by the supervised
approach. Such improvement also holds on the evaluation set,
the results on which are presented in Table 5 at the end of sec-
tion 4.2, where we summarize all the results. It is also worth
mentioning that in low-resource conditions with only 17h or
35h of transcribed speech, the unsupervised DLMs performs as
well as the supervised DLMs.

As we discussed in the introduction, a more interesting
question to ask in this semi-supervised scenario, is whether the
improvement from unsupervised training can add to the gains of
supervised training on the transcribed resources. Unfortunately
the answer is no. As demonstrated in Table 3, unsupervised
training brings no extra WER reduction. It also appears to have
a tendency to degrade the model performance as we add more
hallucinated data. In other words, if we have a set of transcribed
data where we can train supervised DLMs, it is probably not
necessary to extract phrasal cohorts from it and carry out addi-
tional unsupervised training.

Table 3: Additional “No-benefit” of Unsupervised training. 1-
best WER: 22.8

Transcribed speech 133h 337h 693h
Sup DLM 22.1 21.8 21.7

Sup + 3M Unsup 22.1 21.9 21.7
Sup + 5M Unsup 22.2 22.0 21.8

Sup + 10M Unsup 22.2 22.1 21.8

4.2. Cohorts from Untranscribed Speech

With the negative results presented in Table 3, we want to em-
phasize that the real strength of the phrasal cohort approach is in
the fully unsupervised scenario. In this section, we will present
such results.

In this setting, we do not have access to the reference tran-
script of the 690 hours of speech. As we described in section 2,
we can extract cohorts symmetrically, considering all of the
pair-wise alignments between the top-k ASR hypotheses.

As in the previous set of experiments, the choices of various
hyper-parameters (length of phrases, k, ...) are found using the
fast local training strategy. The optimized set of phrasal cohorts
is then used for hallucinating the 100-best list from text. The
maximal length of phrases on both side of the rule is chosen to
be 4, with pivot words also as part of the phrases. The cohorts
are derived from the top-5 hypotheses. We use the same percep-
tron algorithm with up to trigram features to train the DLMs.

Table 4 demonstrates the WER results on the development
set. In this fully unsupervised setting, we consistently get 0.4%
absolute WER reduction across almost all data conditions. With
as little as 17 hours of speech, we in fact achieve 0.5% WER
improvement. This is only very slightly lower than the 0.6%
improvement shown in Table 2, where the cohorts are extracted
from transcribed data. It is also worth pointing out that with 17
hours of speech, the completely unsupervised approach actually



Table 4: WER results with cohorts derived from untranscribed
speech. 1-best WER: 22.8

Text\Speech 17h 35h 70h 133h 337h 693h
3M 22.4 22.4 22.4 22.4 22.4 22.4
5M 22.4 22.5 22.4 22.4 22.4 22.4
10M 22.3 22.4 22.4 22.4 22.4 22.4

outperforms the standard supervised DLM by 0.2% (22.3% vs.
22.5%). However, the benefit of the proposed method does not
seem to scale, the WER improvement seems to quickly saturate
with the minimal amount of data.

Another interesting observation we had for this set of exper-
iments is that the global n-best extraction using an LM consis-
tently produces 0.1%-0.2% better WERs than the local training
strategy, of which the WER numbers are not shown here. This
was not the case when the cohorts are derived from transcribed
data. The reason for such distinction is very likely to be the
symmetric way that we extract cohorts from untranscribed data.
Considering all pair-wise alignments in the absence of reference
strings can produce cohort sets with significant level of noise.
The local n-best training considers all of them while the LM-
derived global n-best list is a much smaller and cleaner set of
hypotheses.

To further compare supervised and unsupervised DLMs,
and also compare cohorts derived from transcribed and untran-
scribed data, we apply the tuned model in each category (super-
vised DLM on the transcribed 690h; unsupervised DLM with
cohorts derived from the transcribed 690h; unsupervised DLM
with cohorts derived from the untranscribed 690h) on the eval-
uation set. The WER results are shown in Table 5. On the

Table 5: Summary

Dev WER Eval WER
ASR 1best 22.8 25.7
Sup DLM 21.7 24.8

Uns DLM; Trans cohorts 22.2 25.2
Uns DLM; Untrans cohorts 22.3 25.3

evaluation set, we see similar numbers of WER reduction as
on the development set. First, we are able to corroborate the
results presented in [1]: The unsupervised DLM trained with
cohorts derived from transcribed speech can achieve over half
of the WER reduction of supervised DLM (third row). Second,
as the main focus of this paper, we want to highlight that in
the complete absence of transcribed data, as indicated by the
bottom row, the phrasal cohort approach can still achieve over
40% of the gains of supervised DLM. The 0.4% absolute WER
improvement over the 1-best on the evaluation set is also statis-
tically significant (p < 0.001).

5. Future Work
The scalability of unsupervised approaches is always an in-
teresting problem. For the purpose of extensive comparisons
with supervised approaches, our experiments only use up to 690
hours of speech and up to 10 million words of text. However,
there is no reason not to use more. The amounts of text and
untranscribed speech are significantly larger than transcribed
speech, it would be very interesting to see whether the proposed

fully unsupervised training can achieve more gains if we use
1000 hours of speech and 100 million words of text. For exper-
iments of that scale to be feasible, we will have to prune the set
of phrasal cohorts, which are usually very large because of the
symmetric definition. We plan to report such results in future
publications.

6. Conclusion
In this paper, we present a detailed study of unsupervised dis-
criminative language modeling using the phrasal cohort tech-
nique described in [1]. We extend the approach to the fully
unsupervised scenario where cohorts have to be extracted from
untranscribed speech. We show with extensive experiments that
even without transcribed data to derive phrase-level confusions,
we are still able to achieve over 40% of the gains of the super-
vised approach with the proposed technique.
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