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Abstract

In this technical report, we present some preliminary experiments on using multiple se-
quence alignment (MSA) techniques for inducing monolingual finite-state tagging models
that capture some global sequence information. Such MSA techniques are popular in bio-
logical sequence processing, where key information about long-distance dependencies and
three-dimensional structures of protein or nucleotide sequences can be captured without re-
sorting to polynomial complexity context-free models. In the natural language processing
(NLP) community, such techniques have been used very little – most notably for aligning
paraphrases [4] – and not at all for monolingual syntactic processing. We discuss key is-
sues in pursuing this approach: syntactic functional alignment; inducing multiple sequence
alignments; and using such alignments in tagging. Experiments are preliminary but promis-
ing.

1 Introduction
Finite-state (Markov) modeling approaches are justifiably popular for annotation of hidden structure, such as
shallow (non-hierarchical) phrases, due to algorithms for inference that have complexity linear in the length
of the string (Viterbi) and very effective learning algorithms, e.g., conditional random fields. Yet for some
syntactic annotation tasks, the use of context-free models can provide relatively large improvements over
finite-state models, hence potentially justifying the relatively expensive inference (cubic complexity in the
length of the string). For example, [10] showed a greater than one percent improvement achieved by mixing
the Charniak parser [5] with a perceptron trained model replicating the [16] chunking results, yielding a new
best for that chunking task. [9] showed that a 4% absolute gain was achieved in a discourse segmentation
task when features derived from context-free parse trees were used, versus features derived from strictly
finite-state annotations.

To the extent that some of the information available from context-free analyses can be embedded into finite-
state models, perhaps some of the accuracy gain from these examples could be achieved without requiring
full context-free processing. Finite-state approximations to context-free grammars have been the topic of
numerous papers in the field of computational linguistics [15, 14, 13], and robust tagging models have also
been used to capture some aspects of syntactic structure efficiently [17]. While strings of several hundred
words do occur with enough frequency to make the complexity of context-free inference onerous, the length
of biological sequences (e.g., DNA/RNA or protein sequences) are typically far longer. It is often the grammar
constant that makes exact inference with high accuracy context-free models (such as those in [5] or [6])
intractable in NLP; yet even basic context-free models become too costly when sequences of several thousand
symbols are the norm, as in biological sequence processing. As a result, finite-state methods form the core
set of algorithms for processing even higher order structure for these biological sequences. See, e.g., [8] for
a presentation of some of these approaches.

This technical report presents a preliminary investigation of the use of multiple sequence alignment (MSA)
techniques for finite-state natural language syntactic processing. While pairwise alignment methods are ubiq-
uitous in NLP, multiple sequence alignment methods have not been widely used in NLP, despite being heavily
used for biological sequence processing. Barzilay and Lee used an MSA approach for learning lexical choice
[3] and paraphrasing [4] models within the broad context of natural language generation systems. MSA
techniques have also been used in feature exploration for discourse analysis [1]. These uses of MSA have
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---T--C---C-G--------------C----T-G---A-TA-G---AT---G-G-----G-CTC-GCG--T-CTG--A
------G---T-G--------------G----T-A---T-AA-G---AT---G-G-----A-CCC-GCG--T-TGG--A
------G---T-G--------------G----T-A---T-AG-G---AT---G-G-----A-CCC-GCG--T-CTG--A
------G--GC-G--------------G----T-G---A-AG-G---AT---G-A-----G-CCC-GCG--G-CCT--A
------C---C-G--------------G----T-A---G-AC-G---AT---G-G-----G-GAT-GCG--T-TCC--A
---T--C---C-G--------------C----T-T---T-GA-G---AT---G-G-----C-CTC-GCG--T-CCG--A

Figure 1: Columns 1623-1703 out of 7683 of aligned prokaryote 16S rRNA, from aligned sequences available
through http://greengenes.lbl.gov/

explored alignments based on lexical identity or semantic similarity. For the current work, we will align
sequences based on syntactic function, derived from hierarchical syntactic parse trees, which is a departure
from previous uses of alignment in NLP.

The rest of this paper is structured as follows. We first present background on multiple sequence alignments
in biological sequence processing, including reference to commonly used algorithms for constructing them.
This is followed by a section detailing our approach to syntactic alignment. Finally, we will present some
(very) preliminary experimental results on the approaches we have outlined and their use for finite-state
syntactic processing.

2 Multiple sequence alignments
In biological sequence processing, sets of evolutionarily related sequences (families) are jointly aligned in a
tabular format. For example, Figure 1 shows real MSA data for bacterial RNA sequences. RNA sequences
come from a 4 symbol alphabet {A,C,T,G}. The ‘-’ symbol represents a gap in the sequence, and symbols
from different sequences (rows) that occupy the same column in the MSA are aligned.

Given an MSA, simple statistical alignment models can be built, which are typically called profile models.
Position specific score matrices (PSSM) assign a cost to each of the five symbols (the alphabet plus the gap) at
each column. From an existing MSA, the PSSM parameters can be estimated as the negative log probability of
the symbol given the column.1 Note that this sort of model provides no symbol insertion mechanism between
columns, which may prove necessary. A profile hidden Markov model [8] provides such a mechanism, and
can also be estimated from a given MSA, using relative frequency estimation and simple smoothing.

Optimal alignment of an input string with a PSSM or profile HMM can be achieved via a dynamic program-
ming table with the number of columns on one side and the input string on the other side. Hence simple
alignment of a string S with an MSA which has M columns takes O(M |S|) in space and time.

Induction of an MSA from a set of un-aligned input strings has been an area of substantial research in
biological sequence processing. For this paper, we consider a very simple method called iterative pairwise
alignment [2]. The algorithm requires the calculation of all pairwise distances between the strings to be
aligned. Initialize the alignment with one string from the set2. Then, until all strings have been aligned:

1. Choose two strings Si and Sj such that

• Si is already in the alignment
• Sj is not in the alignment
• The distance between Si and Sj is the minimum distance between any such pair

2. Pairwise align Si and Sj

3. Incorporate Sj into the MSA, respecting both the existing MSA and the alignment of Si with Sj

Iterative refinement techniques [2] take an existing MSA, remove aligned strings, and re-align them using
models derived from the MSA after the string was removed, such as a PSSM. For the trials in the current
paper, combinations of iterative pairwise alignment with subsequent iterative refinement were the methods
used to induce the MSA. Specific details will be provided in section 4.

1To smooth such distributions, typically Laplace’s rule (add one observation per symbol per column) is used, along
with relative frequency estimation.

2For results in this paper, we typically used the center string, or that string with the smallest sum of distances to all
strings in the set, as the initial string in the alignment.
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Figure 2: Example trees from Penn Treebank

3 Syntactic alignment
Our approach to syntactic alignment is based on trees from the Penn WSJ Treebank [12]. Constituents are
aligned in a top-down fashion, and the head words of aligned constituents are designated to be aligned. For
example, the trees in Figure 2 are first aligned at the root symbol (S), at which point the heads of these root
S nodes are aligned. All subsequent alignments must then respect the fact that the heads of the S nodes are
aligned.

We applied standard head percolation rules, along the lines proposed in [11], with the exception that the head
of a VP is an embedded VP in preference to the AUX or MD verbs. Hence, for the trees in Figure 2, ‘named’
and ‘called’ are aligned at the root of the tree, as the heads of the two sentences.

After the root nodes are aligned, the children of the root node are aligned. For this example, both S nodes
rewrite to {NP VP .}, hence those categories are aligned. Once the categories are aligned, their heads are
aligned. Finally, their children nodes are aligned, and so on down to the leaves of the tree.

While these trees align quite nicely near the root of the tree, as the alignment proceeds, fewer perfect matches
between the children occur. In order to align as much of the strings as possible, we first make a ‘strict’
alignment pass through the tree, aligning categories when they match perfectly; then we perform a ‘loose’
pass through the tree, respecting the alignments previously committed in the ‘strict’ pass, but permitting
further alignments that did not occur in the first pass.

Informally, the algorithm is as shown in Figure 3, which also shows the alignment that results between the
two strings in Figure 2 through the use of this algorithm. There are a couple of details to note. First, we
pre-defined substitution costs between preterminal POS-tags, so that tags that can play a similar syntactic
role (e.g., different kinds of nouns, noun modifiers, verbs, verb modifiers, punctuation, etc.) have less cost of
substitution than between POS-tags of different classes.

In addition, note that this alignment approach can provide us with an alternative alignment to the full tree-
based alignment by simply removing all of the internal structure of the tree: a single root node rewriting in one
production to all of the POS tags. The returned alignment will essentially be the Levenshtein minimum edit
distance alignment between POS-tag sequences, taking into account the pairwise substitution costs between
POS-tags. Whereas the alignment based on the full tree will consistently align the heads of the string and
key phrases in the tree, the alignment based on a flat tree will be uninformed by constituents or heads of the
string.
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Informal algorithm
1. Try to align two tree nodes τ1 and τ2

2. If labels of nodes differ, try to align τ1 or τ2 with the children of the other
3. Align children labels, respecting already committed alignments
4. Let m be the number of matches

Let ni the number of unaligned non-POS non-terminals among children of τi

5. If m = 0, try to align τ1 or τ2 with the children of the other
6. Assign alignments of the heads of aligned children (fixed moving forward)
7. If ‘loose’ alignment

- Delete the unaligned child node that will lead to the most matches
- Goto line 3

8. Align children nodes with aligned labels
Resulting alignment:

C.B. Rogers Jr. was named − − chief executive officer
− Each side has called a Harvard Business School professor

− − of this business information concern
to testify on that − − issue

Figure 3: Informal presentation of the alignment algorithm, and the resulting alignment of the strings derived
from the full trees in Figure 2

4 Inducing syntactic MSA
Given an alignment method (e.g., based on full trees or flat trees as presented in Section 3), we can build
an MSA for sections 2-21 of the Penn WSJ treebank, which consists of approximately 40,000 sentences (1
million words). To do this, we first require a matrix of pairwise distances for the given alignment method. We
defined the distance for the trials in this paper as follows: align the two trees with the given method (full or
flat); count the number of unaligned words in each string; divide by the total number of words in both strings.

Given these distances, we follow the iterative pairwise alignment algorithm presented in Section 2. However,
rather than using this to align all 40 thousand strings into the MSA, we instead stopped the iterative pairwise
alignment after just 4000 strings had been incorporated into the MSA, at which point we used an induced
PSSM model to align the remaining strings into the MSA. We then iterated multiple times: using the PSSM
to create and MSA, then using the MSA to induce the PSSM. This resulted in a reduction of columns in
the MSA, by virtue of columns eventually containing only gaps across the entire corpus, at which point
the columns can be removed. Table 1 shows the number of columns at each iteration, for each of the two
alignment methods that we used.

At the end of this iterative process, we can use both the given MSA and the given PSSM profile model for
processing new strings. New strings are aligned using POS-tags, which can either be gold tags (given by
the treebank) or POS-tagger tags. In the next section, we provide results on accuracy of column assignment
given POS-tags, as well as results on using these column assignments within a finite-state base phrase parser.

5 Experiments
For experimental results, we used sections 2-21 for training of all models, section 00 for stopping of the
learning algorithms, and section 24 for development of the approach. All results presented here are on

Iteration: 0 1 2 3 4 5 6
Full trees: 506 457 412 398 391 382 378
Flat trees: 1867 1083 784 716 683 669 656

Table 1: Number of columns in MSA at each iteration of PSSM estimation
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Anchors NNP NNP , CD NNS JJ , MD VB DT NN IN DT JJ NN NNP CD .
∞ 5 22 67 84 97 119 123 127 132 185 209 235 257 272 280 343 359 373
100 1 13 39 45 51 61 64 65 71 97 109 121 139 151 155 179 189 197
10 0 0 0 1 3 4 4 4 5 7 11 13 15 16 17 18 18 19
5 0 0 0 0 1 2 2 2 3 4 4 4 5 6 7 8 8 9

Table 2: Columns assigned to input string of POS tags, both raw (Anchors=∞) and with different numbers
of anchors for “coarse” column definitions

section 24, since this approach is still under development. Base phrase parsing (or chunking) involves non-
hierarchical bracketing of constituents with only pre-terminal (POS-tag) children. Reference base phrase
constituents are extracted from a treebank by removing all constituents in the tree with any child that is
not a POS-tag. Evaluation consists of labeled bracketing precision and recall, combined into an F-measure
accuracy score, according to standard practices for parsing evaluation.

We developed a discriminative tagging system for this work, with both training and inference modules, based
on the approaches in [16, 10]. For POS-tagging, the tagset includes POS-tags, and the input string is the word
sequence. For base phrase parsing, the tagset includes {O, BX , IX} for 20 non-terminal categories X , where
BX signifies that the word is the beginning of a base-phrase labeled with X , IX signifies that the word is
inside of a base-phrase labeled with X , and O signifies that the word is outside of any base-phrase. Clearly,
the tag IX can only follow either BX or IX in the sequence, for the sequence to represent a valid bracketing.
For the base phrase parsing task, the input string is the POS-tag sequence.

We learned models using the Perceptron algorithm, and used averaging to control for overtraining [7], which
was found in [16] to be competitive with conditional likelihood optimization. Features included a subset of
features explored in [16], including tritag output labels and up to 4 input word/tag sequences with the output
tag (or bitag). POS-tagging performance was 96.9 on section 24, which is the same as the performance
achieved by models as described in [10], a replication of the approach in [16].

Before discussing the accuracy of our PSSM in aligning new strings when given POS-tagger output, we
will discuss “coarse” column representations. With 378 possible column assignments, the meaning of any
individual column, in terms of syntactic function, may be too fine grained (and perhaps too sparsely observed)
to be of great utility. One way to leverage the alignment is to define a small number of regions of the string by
collapsing columns into a coarser representation. This can be done via what we are calling “anchor” columns,
i.e., those columns that are rarely empty. Examples of such columns are those associated with the head verb
of the string, the subject head noun and sentence final punctuation. By selecting those columns where gaps
occur least often, we can then define regions of the MSA that occur between the selected anchors. Given k
anchors, there are k + 1 regions, leading to a total of 2k + 1 “coarse” columns.

Table 2 shows the column assignments to a particular POS-tag sequence, using the PSSM derived from full
parse trees via the process detailed in Section 4. Coarse columns are also shown, when there are 100 anchors,
10 anchors or 5 anchors. Note that, when anchors are specified, odd numbers represent the anchors and even
numbers represent the regions between anchors. Thus, when there are 5 anchors, the anchor associated with
the main verb is column 3, and the anchor associated with the final punctuation is column 9.

Table 3 shows the accuracy of column assignments for section 24 of the WSJ treebank, using the derived
PSSM models from the full or flat trees. The reference column assignments are given by aligning using
the gold tags. We see that the full trees result in higher accuracy column assignments versus the use of flat
trees, even when using an equivalent number of columns via the use of anchors. Only with 5 anchors do the
accuracies converge. Interestingly, the overlap of the column assignments when 5 anchors are used remains
below 50 percent – hence this convergence is not due to selection of the same anchors.

Full tree Flat tree
Anchor columns derived PSSM derived PSSM

∞ 90.2 88.8
100 90.2 88.9
10 93.0 92.0
5 95.0 95.0

Table 3: Accuracy of column assignments when given POS-tags, section 24
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Full tree Flat tree
Tags Baseline derived PSSM derived PSSM
gold 90.1 90.4 90.0

tagger 89.2 89.5 89.1

Table 4: Base phrase bracketing F-measure accuracy, section 24

To incorporate column assignments into base phrase chunking, we included sequences of columns as features
in our model, just as we have used features of POS-tags. Thus, for instance, in Table 2, the main verb (VB)
is column 3 when 5 anchors are used to define coarse columns, and it is preceded by a column 2 MD. Hence
features associated with a particular base phrase tag X would include

• (chunktagi = X; POS-tagi−1 = MD; POS-tagi = VB)

• (chunktagi = X; Anchor5-tagi−1 = 2; Anchor5-tagi = 3)

• (chunktagi = X; POS/Anchor5-tagi−1 = MD/2; POS/Anchor5-tagi = VB/3)
For the current trials, the features included tritag base phrase tags, up to 4 POS-tag sequences, bitag column
tags, and bitag (column × POS-tag) features. Our best results were achieved using coarse columns derived
from 5 anchors. Table 4 shows our results for both reference (gold) tags and POS-tagger tags. While the
improvements are modest for full tree derived PSSM column annotations, there is no gain when using the flat
trees to derive the PSSM.

6 Discussion
The results presented here show modest improvements given PSSM assigned column sequences as features
within a base phrase chunker, indicating at least some utility of these annotations beyond the tags themselves.
The process by which the PSSM is constructed appears to be a key consideration, since the alignments based
on flat trees did not yield annotations of utility for this task. The chosen method for deriving the PSSM
represents essentially the first approach that we have taken, hence there remains much to investigate, and
likely further improvements to the derived annotations.

We can also conclude that the definition of anchors to derive coarse regions of the string appears to be a useful.
It could very well be the case that specifically building the MSA to preserve anchor columns would be an
important consideration. For example, in the column assignments in Table 2, we see that the fifth token in the
string ‘NNS’, which is within an appositive modifying the subject NP, occupies an anchor slot, as opposed to
the subject head noun itself (which is the second token). This suggests that the iterative re-estimation of the
PSSM is likely causing the column assignments to diverge from their original, tree-derived meanings. This
also remains an important area of further research.

We would also like to continue working on the alignment model for deriving the column tags. We can likely
do much better than the simple PSSM in assigning columns to input POS-tag sequences. Further, we could
build joint POS-tagging and alignment models, perform forward-backward estimation and marginalize over
the POS-tags to derive more robust estimates of the columns given a particular string. In addition, we would
like to explore other methods for making use of column sequences as features within base phrase parsing
models.

While there remains much work to be done to understand how best to approach this problem of MSA from
syntactic trees, this report provides an initial indication that the information derived from such alignments
can be of utility within finite-state syntactic models.
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