
Open vocabulary language modeling for binary response typing interfaces

Brian Roark
Center for Spoken Language Understanding
Division of Biomedical Computer Science

Oregon Health & Science University
roark@cslu.ogi.edu

Abstract

We contrast language modeling for bi-
nary response typing interfaces with the
more standard use of language models for
full sequence disambiguation in applica-
tions like speech recognition. We high-
light a key issue for construction of these
language models: using Huffman coding
versus simpler binary coding tree topolo-
gies. We then introduce novel methods
for handling of selection error within the
model itself. Surprisingly, we find that the
difference between optimal Huffman cod-
ing and simpler linear coding is reduced
not only with improved language models
(which was expected and is verified) but
also with increased selection error rates.

1 Introduction

Language modeling is a very important part of
a large number of applications, including speech
recognition, machine translation, optical charac-
ter recognition and novel text input modalities like
T9 for mobile phones (Silfverberg et al., 2000;
Tanaka-Ishii, 2006). In all of these applications,
the role of the language model is to aid dis-
ambiguation between a set of alternative symbol
strings in the language – alternative transcriptions,
translations or intended messages. In this paper,
we focus on an application – binary response typ-
ing interfaces – that can make profitable use of
a language model, but which differs from these
other tasks in that there is no multi-symbol string
disambiguation required. Rather, the language
model is used to design an efficient binary code for
each desired symbol, to allow text input by users
whose sole mode of interaction with the computer
is some kind of binary yes/no response. This is
a very important application within the Assistive
and Augmentative Communication (AAC) com-

munity, with switches ranging from eyeblink de-
tectors to ERP signals in a Brain-Computer Inter-
face (BCI). This paper presents several important
issues in building language models for such a task,
in contrast to more standard sequence disambigua-
tion uses of the language model.

One of the most widely-known AAC typing
interfaces is Dasher (Ward et al., 2002), which
uses language models and arithmetic coding to
present alternative letter targets on the screen with
size relative to their likelihood given the his-
tory. Users can type by continuous motion, such
as eye-movement, fixing their gaze on the in-
tended letter and moving their gaze from left-to-
right through the interface, while their eye move-
ments are tracked. This is an extremely effec-
tive typing interface alternative to keyboards, pro-
vided the user has sufficient motor control to per-
form the required systematic visual scanning. The
most severely impaired users, such as those with
locked-in syndrome (LIS), have lost the voluntary
motor control sufficient for such an interface. Re-
lying on extensive visual scanning or complex ges-
tural feedback from the user renders a typing in-
terface difficult or impossible to use for the most
impaired users. Simpler interactions via brain-
computer interfaces (BCI) hold much promise for
effective text communication for these most im-
paired users. Yet these simple interfaces have yet
to take full advantage of language models to ease
or speed typing.

The purpose of this paper is threefold. First, to
introduce this as an important application with lan-
guage modeling requirements quite distinct from
most language modeling applications. Second, to
illustrate that with rich language models, the dif-
ference between optimal Huffman coding and sim-
pler coding topologies is relatively small, thus per-
mitting much simpler interfaces (and reduced cog-
nitive load) without much expected loss in typing
speed. Finally, we will present novel methods for

taking into account inevitable errors in the user
responses, and present simulation results at vari-
ous error rates. Interestingly, the relatively small
differences between coding approaches gets even
smaller with higher error rates.

2 Preliminaries and background

2.1 Locked-in syndrome, AAC and BCI

Locked-in syndrome can result from traumatic
brain injury, such as a brain-stem stroke1, or from
neurodegenerative diseases such as amyotrophic
lateral sclerosis (ALS or Lou Gehrig’s disease).
The condition is characterized by near total paral-
ysis, though the individuals are cognitively intact.
While vision is retained, the motor control impair-
ments extend to eye movements. Often the only
reliable movement that can be made by an indi-
vidual is a particular muscle twitch or single eye
blink, if that.

While we do not have space for a comprehen-
sive review of AAC technologies for impaired
users, we will discuss several alternative tech-
nologies for typing with impairment. We have
already mentioned Dasher (Ward et al., 2002),
which tracks the gaze trajectory through a continu-
ously updating interface. Another approach mak-
ing use of gaze is the GazeTalk system (Hansen
et al., 2003), which presents the user with a 3×4
grid and captures which cell the user’s gaze fixates
upon. The cell layouts are configurable, but typi-
cally one cell contains a set of likely word comple-
tions; others are allocated to space and backspace;
and around half of the cells are allocated to the
most likely single character continuation of the
input string. Both Dasher and GazeTalk dynam-
ically reconfigure the interface over time based
on language model predictions, thus requiring the
user to scan the interface to find the letter of inter-
est. In pilot results of Hansen et al. (2003), users
produced more words per minute with a static key-
board interface than with the predictive grid inter-
face, illustrating the impact of the cognitive over-
head that goes along with this sort of scanning.

Another suggested typing interface for this im-
paired population is via electroencephalography
(EEG), which measures electrical activity of the
brain via unobtrusive electrodes on the scalp.
EEG-based signatures can be used to allow the

1Brain stem stroke was the cause of LIS for Jean-
Dominique Bauby, who dictated his memoir The Diving Bell
and the Butterfly via eyeblinks (Bauby, 1997).

M

G

A FEC

_9765

3 4Y 1Z

XWUTS

RQON

H

B

LKI

V

8

P

J

2

D

Figure 1: Spelling grid such as that used for the P300
speller (Farwell and Donchin, 1988). ‘ ’ denotes space.

user to manipulate an on-screen cursor, such as
rotating and advancing movements in the Berlin
brain-computer interface (Blankertz et al., 2006),
or to detect a fixation on part of the screen, such
as a BCI version of Dasher (Wills and MacKay,
2006). Alternately, event-related potentials (ERP)
can be detected in the EEG signal as a discrete bi-
nary response mechanism. The well-known P300
is a particularly promising ERP that occurs with
approximately 300 millisecond latency after pre-
sentation of the desired target stimulus. The P300
is reliable, with a quite consistent latency, and is
intact in locked-in individuals, hence has been pro-
posed as a binary response mechanism for typing.

A key consideration for a binary response typ-
ing interface – based on the P300 or some other
binary response mechanism – is the kind of stim-
uli used to elicit the binary response. The best
known interface for such an approach is the 6×6
spelling grid used for the P300 Speller (Farwell
and Donchin, 1988), which is shown in Figure 1.
The user attends to the desired letter, and rows and
columns are sequentially highlighted. When the
row or column of the target letter is highlighted,
this results in a P300 ERP. Correct identification of
both row and column uniquely identifies the target
symbol. We will refer to this kind of interface as
row/column scanning. Such a spelling grid can be
used with any sort of binary response mechanism.

Note that symbols can be placed in a different
order in the spelling grid than the alphabetic order
in Figure 1, e.g., based on frequency so as to min-
imize keystrokes with row/column scanning. For
example, the single space character (denoted ‘ ’ in
the grid of Figure 1) is far and away the most fre-
quent character in typed English text, hence would
best be located in the first row scanned and the first
column scanned. The placement of characters in
the grid based on unigram frequency we will term

1 A← V � initialize A as symbol set V
2 k ← 1 � initialize bit position k to 1
3 while |A| > 1 do
4 P ← {a ∈ A : a[k] = 1}
5 Q← {a ∈ A : a[k] = 0}
6 Highlight symbols in P
7 if selected then A← P
8 else A← Q
9 k ← k + 1
10 return a ∈ A � Only 1 element in A

Figure 2: Algorithm for selecting symbol given binary code

‘unigram row/column scanning’, and it is a simple
way to take into account language frequency.

While the idea of using a P300 Speller for
locked-in users has been around for decades, re-
cent attempts to use this as a typing interface for
individuals with ALS found that the many items
in the grid caused problems for these patients, be-
cause of difficulty orienting attention to specific
locations in the spelling grid (Sellers et al., 2003).
This is another illustration of the need to reduce
the cognitive overhead of such interfaces. Yet the
success of classification of ERP for target stimuli
in a simpler task for this population indicates that
the P300 is a binary response mechanism of utility
for this task (Sellers and Donchin, 2006).

2.2 Binary codes for typing interfaces

Row/column scanning, as outlined in the previ-
ous section, is not the only means by which the
spelling grid in Figure 1 can be used as a binary re-
sponse typing interface. Rather than highlighting
full rows or full columns, arbitrary subsets of let-
ters could be highlighted, and letter selection again
driven by a binary response mechanism. An algo-
rithm to do this is as follows. Assign a unique
binary code to each symbol in the symbol set V
(letters in this case). For each symbol a ∈ V , there
are |a| bits in the code representing the letter. Let
a[k] be the kth bit of the code for symbol a. We
will assume the following about the binary codes
over the symbol set V : if k ≤ |a| and a[k] = x
for x ∈ {0, 1}, then there exists a symbol b ∈ V
such that k ≤ |b|, a[j] = b[j] for j < k, and
b[k] = 1 − x. This insures that every bit in every
symbol’s code provides information distinguish-
ing that symbol from other symbols in the set, i.e.,
every bit is informative. Given such an assignment
of binary codes to the symbol set V , the algorithm
in Figure 2 can be used to select the intended letter
in a spelling grid such as that in Figure 1.

One key question in this paper is how to pro-
duce such a binary code, and this is where lan-

A
Figure 3: Alternative typing interface presenting one char-
acter at a time, suitable for an RSVP paradigm.

guage modeling can be included in such an inter-
face. If we minimize the number of expected bits,
the symbol selection may be achieved much more
quickly than with the fixed row/column highlight-
ing described in the previous section, even with
unigram based grid positions. Huffman coding
(Huffman, 1952) provides the minimal expected
bits, and is hence optimal in this respect.

Another type of binary code, which we will call
a linear code, provides a lot of flexibility in the
kind of interface that it allows, relative to the other
methods mentioned above. In this code, one sym-
bol would have a binary code consisting of all ze-
ros; all other symbols would have exactly one bit
set to ‘1’, and no two symbols can have a ‘1’ in
the same bit. In this binary code, each iteration
of WHILE loop in the Figure 2 algorithm would
have a set P of size 1. With such a code, the P300
spelling grid in Figure 1 would highlight exactly
one letter at a time for selection. Alternately, sym-
bols could be presented one at a time, as in Figure
3, which would be appropriate for a rapid serial
visual presentation (RSVP) paradigm, where in-
dividual images are presented with relatively low
latency one at a time. Studies have shown im-
age recognition with very short duration of pre-
sentation, as low as 50 milliseconds (Thorpe et
al., 1996), and single trial ERP detection has been
shown to be effective within an RSVP paradigm
using image latencies as low as 100 milliseconds
(Mathan et al., 2008; Gerson et al., 2005). Even
with longer presentation duration, the simplicity
of an interface that presents a single letter at a
time may reduce user fatigue, and even make typ-
ing feasible for users that cannot maintain focus
on a spelling grid. Additionally, single symbol
auditory presentation would be possible, for vi-
sually impaired individuals, something that is not
straightforwardly feasible with the sets of symbols
that must be presented when using Huffman codes.
The key question is: how much worse than optimal
Huffman coding is the linear coding?

2.3 Language modeling for typing interfaces

Much of the language modeling research within
the context of AAC has been for word comple-
tion/prediction for keystroke reduction (Darragh et
al., 1990; Li and Hirst, 2005; Trost et al., 2005;
Trnka et al., 2006; Trnka et al., 2007; van den
Bosch, 2006; Wandmacher and Antoine, 2007).
The typical scenario for this is allocating a region
of the interface to contain a set of suggested words
that complete what the user has begun typing. The
expectation is to derive a keystroke savings when
the user selects one of the alternatives rather than
typing the rest of the letters. The cognitive load
of monitoring a list of possible completions has
made the claim that this speeds typing controver-
sial (Anson et al., 2004); yet some results have
shown this to speed typing under certain condi-
tions (Trnka et al., 2007).

The current task is very similar to word pre-
diction, except that the prediction interface is the
only means by which text is input. In principle,
the symbols that are being predicted (hence typed)
can be from a vocabulary that includes multiple
symbol strings such as words. However, a key re-
quirement in a typing interface is an open vocab-
ulary – the user should be able to type any word,
whether or not it is in some fixed vocabulary. In-
cluded in such a mechanism is the ability to repair:
delete symbols and re-type new ones. In contrast,
a word prediction component must be accompa-
nied by some additional mechanism in place for
typing words not in the vocabulary. The current
problem is to use symbol prediction for that core
typing interface, and this paper will focus on pre-
dicting single ASCII and control characters, rather
than multiple character strings. The task is actu-
ally very similar to the well known Shannon game
(Shannon, 1950), where text is guessed one char-
acter at a time.

Character prediction is done in the Dasher and
GazeTalk interfaces, as discussed in previous sec-
tions. There is also a letter prediction compo-
nent to the Sibyl/Sibylle interfaces (Schadle, 2004;
Wandmacher et al., 2008), alongside a separate
word prediction component. Interestingly, the
letter prediction component of Sibylle (Sibylet-
ter) involves a linear scan of the letters, one at a
time in order of probability (as determined by a
5-gram character language model), rather than a
row/column scanning of the P300 speller. This
approach was based on user feedback that the

row/column scanning was a much more tiring in-
terface than the linear scan interface (Wandmacher
et al., 2008), which is consistent with the results
discussed in the previous section on the difficulty
of ALS individuals with the P300 speller interface.

We claimed in the introduction that language
modeling for a typing interface task of this sort
is very different from standard language modeling
tasks. This is because, at each symbol in the string,
the already typed prefix string is given – there is
no ambiguity in the prefix string, modulo subse-
quent repairs. In contrast, in speech recognition,
machine translation, optical character recognition
or T9 style text input, the actual prefix string is not
known; rather, there is a distribution over possible
prefix strings, and a global inference procedure is
required to find the best string as a whole. For typ-
ing, once the symbol has been produced and not
repaired, the model predicting the next symbol is
given the true context. This has several important
ramifications for language modeling:
Joint versus conditional likelihood. Discrimina-
tive methods are increasingly advocated for se-
quence modeling (Lafferty et al., 2001; Collins,
2002) versus more common generative modeling
approaches (e.g., maximum likelihood estimation
of hidden Markov models), and this has also ex-
tended to language modeling (Roark et al., 2007).
For the current task, however, there is no global
inference begin performed over sequences, hence
(discriminative) conditional likelihood optimiza-
tion is achieved for this task with standard relative
frequency estimation.
Supervised model adaptation. One important
by-product of typing is supervised adaptation data,
which is not produced in these other applica-
tions, because there is no certainty about the in-
tended string. Modulo unrepaired errors (typos),
the string that is typed by a user is immediately
available to influence models for subsequent typ-
ing. Further, patterns of errors can be learned from
explicit repairs for improved error modeling.
No automaton structure required. Since the his-
tory of previously typed symbols is given at each
symbol, one can go arbitrarily far back in the his-
tory to retrieve relevant features, which is ideal for
approaches such as maximum entropy modeling.
Text-based simulation. Perplexity and cross-
entropy derived from text corpora have lost fa-
vor in recent years as evaluation measures for lan-
guage modeling, due to relatively low correlation

between perplexity/entropy reduction and system
performance. This low correlation is primarily due
to the mismatch between the joint/generative ob-
jective that is optimized in perplexity/entropy re-
duction and the actual discriminative role that the
language model plays in sequence processing ap-
plications. As stated above, the joint versus condi-
tional distinction is lost in this application, and as
such entropy reduction on text corpora is directly
related to model utility for the task. Further, by in-
troducing random error, we can simulate user per-
formance at various error levels in ways not possi-
ble for speech recognition, machine translation or
similar applications.

We do not explore all of these issues in this pa-
per. Here we will consider n-gram language mod-
els of various orders, estimated via smoothed rel-
ative frequency estimation (see § 3.2). The prin-
cipal novelty in the current approach is the prin-
cipled incorporation of error probabilities into the
binary coding approaches, and the demonstration
that linear coding methods are even nearer opti-
mal when errors are introduced than in error-free
scenarios, which was unexpected. Achieving even
better language models via, e.g., maximum en-
tropy modeling and user adaptation in future work
will only strengthen the conclusions of the paper.

3 Methods

3.1 Corpora

We prepared two corpora for evaluation: (1)
newswire text from the New York Times portion
of the English Gigaword corpus (LDC2007T07);
and (2) email text from the Enron email dataset2.
Both corpora were preprocessed for the current
evaluation, as detailed here. The key intent of the
pre-processing was to yield text that was actually
typed. Hence formatted tabular data, pasted signa-
tures or bylines, automatically generated text and
meta-information were removed, as was as much
duplication as possible.

The New York Times portion of the English Gi-
gaword corpus consists of SGML marked-up arti-
cles from the New York Times from 1994 to 2002,
totaling approximately 914 million words. Some
documents in this collection are near repeats, since
updated, extended or edited articles are included
in the collection. Most often these are included
in series, with repeated titles, allowing for trailing

2http://www-2.cs.cmu.edu/ enron/

versions to be discarded. Articles with no head-
line or no dateline were discarded, as were arti-
cles that were not identified as type “story”. Tab-
ular articles, such as bestseller lists, were also dis-
carded. All content between paragraph delimiters
were placed on a single line (single space replac-
ing existing newline characters within the para-
graph), followed by a newline. No sentence seg-
mentation was performed.

An iterative procedure was followed to reduce
duplication in the corpus. Repeated strings of
length greater than 50 characters were extracted
and sorted by count. Some of these were due to
common article types, such as book lists, which
allowed us to determine criteria for article ex-
clusion. Others were due to meta-data commu-
nicating editing requirements to the editors, e.g.,
“(OPTIONAL TRIM)”. Some of these signaled
the end of the article, and any material from that
point to the end of the document could be dis-
carded. Others indicated that the article as a whole
should be discarded. Once patterns and actions
were arrived at, a new corpus was generated, and
the process was repeated, until the repeated sub-
strings stopped yielding any substantial changes to
the normalization procedure.

For the Enron Email Dataset, we used data
from the SQL database made available by Andrew
Fiore and Jeff Heer3, who performed an extensive
amount of duplicate removal and name normaliza-
tion. Text was extracted from the “bodies” table
of the database, which corresponds to the bodies
of the email messages. Normalization was similar
to the iterative procedure for the New York Times
detailed above, in an attempt to limit the amount
of spam and mass mailings, as well as to remove
pasted signatures and attachments from the end
of emails. In contrast to the New York Times
data – which consists largely of very short para-
graphs – sentence segmentation was performed on
the email data, with the newline character used as
a sentence delimiter. Again, the intent of the nor-
malization was to have a corpus that is representa-
tive of typed text. This normalization of the email
data will be made available on-line.

3.2 Character-based language modeling

For this paper, we use character n-gram models.
Carpenter (2005) has an extensive comparison of
large scale character-based language models, and

3http://bailando.sims.berkeley.edu/enron/enron.sql.gz

we adopt smoothing methods from that paper. It
presents a version of Witten-Bell smoothing (Wit-
ten and Bell, 1991) with an optimized hyperpa-
rameter K, which is shown to be as effective as
Kneser-Ney smoothing (Kneser and Ney, 1995)
for higher order n-grams (e.g., 12-grams).

For a string of symbols W , let W [i, j] be a sub-
string beginning at the ith symbol and ending at
the jth symbol, and let Wi = W [i, i], i.e., the
ith symbol. An n-gram model is a Markov model
of order n−1, which means that it conditions the
probability of each symbol Wi on the previous
n−1 symbols W [i−n+1, i−1]. Thus a 12-gram
model conditions the probability of each symbol
Wi on the previous 11 symbols W [i−11, i−1].

The maximum likelihood estimate for these n-
gram probabilities is estimated by relative fre-
quency estimation from a corpus. Let f(W [i, j])
denote the frequency of the substring W [i, j] in
the training corpus. Then

Pml(Wi |W [i−n+1, i−1]) =
f(W [i−n+1, i])

f(W [i−n+1, i−1])
(1)

These maximum likelihood models are typi-
cally recursively smoothed to lower order n-gram
models to derive the final probability estimate.
For this paper, we use model interpolation with a
smoothing parameter 0 ≤ λ ≤ 1, as follows:

P(Wi |W [j, i−1]) =

λ(W [j, i−1]) Pml(Wi |W [j, i−1]) +

(1− λ(W [j, i−1])) P(Wi |W [j+1, i−1]) (2)

where λ(W [j, i]) is estimated using the version
of Witten-Bell smoothing with hyperparameter K
from Carpenter (2005), as follows:

λ(W [j, i]) =
f(W [j, i])

f(W [j, i]) + K · |{w : f(W [j, i]w) > 0}| (3)

The second term in the denominator of Equation
3 is the hyperparameter K times the size of the
set of words that are observed following the string
W [j, i] at least once in the corpus.

To end the smoothing recursion, we smooth the
unigram model (Markov order 0) with a uniform
distribution, so that all symbols have probabilities.

3.3 Binary codes
Given the string input so far, we can use a
smoothed character n-gram language model to as-
sign probabilities to all symbols in the symbol set
V . After sorting the set in order of decreasing
probability, we can use these probabilities to build

1

Huffman:

10 01

111 110 001

db

c a e f
000

0

0

101

01 1 0

c

Linear:

1 0

1 0

1 0

1 0

01

001

0001

00001 00000

a

e f

1
b

d
01

Letter: a b c d e f
Probability: 0.15 0.25 0.18 0.2 0.12 0.1
Huffman bits: 3 2 3 2 3 3
Linear bits: 4 1 3 2 5 5

Figure 4: Two binary trees for encoding letters based on
letter probabilities: (1) Huffman coding; and (2) Linear cod-
ing via a right-branching tree (right-linear). Expected bits are
2.55 for Huffman coding and 2.89 for linear coding.

binary coding trees for the set. Hence the binary
code assigned to each symbol in the symbol set
differs depending on what has been typed before.

Figure 4 shows two different binary trees, which
yield different binary codes for six letters in a sim-
ple, artificial example. Huffman coding (Huffman,
1952) builds a binary tree that minimizes the ex-
pected number of bits according to the provided
distribution. There is a linear complexity algo-
rithm for building this tree given a list of items
sorted by descending probability. We used an up-
date to this approach from Perelmouter and Bir-
baumer (2000) that accounts for any probability of
error in following a branch of the tree, and builds
the optimal coding tree even when there is non-
zero probability of taking a branch in error. Linear
coding builds a simple right-linear tree that pre-
serves the sorted order of the set, putting higher
probability symbols closer to the root of the tree,
thus obtaining shorter binary codes. Linear coding
can never produce codes with fewer expected bits
than Huffman coding, though the linear code may
reach the minimum under certain conditions. The
resulting codes can be used for a typing interface,
using the algorithm presented in Figure 2.

3.4 Simulating and modeling errors

We simulated random errors as follows. At each
character in the test corpus, if the current bit of
the target character is x ∈ {0, 1} then, for some
parameter p, we choose the correct bit with prob-
ability p (using a random number generator); and
we choose the incorrect bit with probability 1−p.

If a selection leads to a single symbol, then that
symbol is typed. Otherwise, if a selection leads to
a set with more than one symbol, all symbol prob-
abilities (even those not in the selected set) are up-
dated based on the error probability and scanning
continues. If a non-target (incorrect) symbol is se-
lected, the DEL (delete) symbol must be chosen
to correct the error, after which the typing inter-
face returns to the previous position. Three key
questions must be answered in such an approach:
(1) how are symbol probabilities updated after a
keystroke, to reflect the probability of error? (2)
how is the probability of DEL estimated? and (3)
when the typing interface returns to the previous
position, where does it pick up the scanning? In
this section we answer all three questions.

Consider the Huffman coding tree in Figure 4.
If the left-branch (‘1’) is selected by the user, the
probability that it was intended is p versus an error
with probability 1−p. If the original probability of
a symbol is q, then the updated probability of the
symbol is pq if it starts with a ‘1’ and (1−p)q if
it starts with a ‘0’. After updating the scores and
re-normalizing over the whole set, we can build
a new binary coding tree. The user then selects
a branch at the root of the new tree. A symbol
is finally selected when the user selects a branch
leading to a single symbol.

The probability of requiring the delete (DEL)
character can be calculated directly from the prob-
ability of keystroke error – in fact, the probabil-
ity of DEL is exactly the probability of error 1−p.
To understand why this is the case, consider that
a non-target (incorrect) symbol can be chosen ac-
cording to the approach in the previous paragraph
only with a final keystroke error. Any keystroke
error that does not select a single symbol does not
eliminate the target symbol, it merely re-adjusts
the target symbol’s probability along with all other
symbols. Hence, no matter how many keystrokes
have been made, the probability that a selected
symbol was not the target symbol is simply the
probability that the last keystroke was in error.
Hence the probability of DEL is simply 1−p.

Finally, if DEL is selected, the previous position
is revisited, and the probabilities are updated from
the last ranking at that position by reducing the
probability of the deleted symbol to (effectively)
zero and re-normalizing the rest of the symbols.
Hence, we pick up processing as though the se-
lected symbol was not selected, with the additional

action of reducing the probability of the selected
symbol to effectively zero.

3.5 Model building parameterizations

From the normalized data described in 3.1, we ex-
tracted disjoint training sets and testing sets. To
decide on model building parameterizations, we
used a small (approximately 100k characters) de-
velopment set. For the New York Times data, we
extracted training sets of (approximate) size 6, 21,
42, 128 and 256 million characters. These were
extracted from the beginning of the large corpus;
test and dev sets from the end of the large cor-
pus. We found very little change in performance
from 42 to 256 million characters on the develop-
ment set, hence the reported results are for the 42
million character training set. Our best perform-
ing hyper-parameter for the Witten-Bell smooth-
ing (see Section 3.2) was K = 15, which is com-
parable to optimal settings found by Carpenter
(2005) for 12-grams. The New York Times test
set had approximately 237 thousand characters.

The Enron set was considerably smaller, and we
used all of the available data as training after re-
moving approximately 213 thousand characters as
a test set. The resulting training set contained ap-
proximately 35 million characters.

We construct our models by processing each
string in the corpus separately, then integrating the
resulting structures (suffix trees) into the overall
count structure and incrementing counts. This ap-
proach enabled us to efficiently capture character
n-grams of length up to the length of the string.
Our specific approach was as follows: for each
string in the training data, we built the suffix tree
for that string, i.e., the data structure that repre-
sents all suffixes of that string. We used the Ukko-
nen (1995) on-line linear complexity algorithm, as
presented in Gusfield (1997). We then took the
weighted union of these individual string suffix
trees, such that each state and arc in the result-
ing union contained the count of the correspond-
ing character n-gram across all sentences. These
counts were then used to estimate the smoothed
n-gram language models, as presented in Section
3.2. For some trials, a maximum length for the suf-
fixes was established, and all suffixes in the tree of
length longer than the maximum were truncated to
the maximum length.

Our symbol set was of size 100, including the
96 ASCII characters above 31 (including the DEL

symbol) plus tab, newline, end-of-file, and a re-
served character for anything falling outside of the
symbol set. Because the language models were
smoothed to a uniform distribution, all symbols re-
ceived a non-zero probability, even if unobserved
in the training set. With non-zero probabilities of
errors, we estimated the probability of the DEL
symbol with procedures presented in Section 3.4.

4 Empirical results

4.1 Huffman versus linear coding

The first set of results are presented in Figure
5. On the y-axis, these bar graphs show the
number of bits per character (which correspond
to keystrokes per character in our typing inter-
face) required to type the test corpus, when given
a model of a particular n-gram order trained on
the training corpus. The x-axis is the suffix tree
truncation parameter described in the last section,
which dictates the maximum n-gram order of the
model. We show results with both linear codes and
Huffman codes under three conditions: trained
and tested on the New York Times; trained and
tested on the Enron Email Dataset; and trained
on NYT and tested on Enron. In addition, we
provide a baseline (dashed-line) of the unigram
row/column scanning approach, whereby the sym-
bol positions in the spelling grid are determined by
unigram probability.

As can be seen with these plots, the number of
bits (keystrokes) per character required with the
linear coding is much more than with Huffman
coding when the order of the n-gram model is low;
but the difference between the two coding meth-
ods is small (less than 1 bit for top two bar graphs)
when the order of the n-gram model reaches 10-
15 and beyond. Both approaches yield substan-
tial improvements over unigram row/column scan-
ning. In the third graph in Figure 5. This result
shows the performance with out-of-domain train-
ing (New York Times training for Enron test), the
difference between the two coding approaches is
just under two bits per character for the higher or-
der n-gram models, which also illustrates the ba-
sic point of these results: the better the language
model, the less the difference between Huffman
coding and linear coding. Given the availability
of supervised adaptation data as a byproduct of
typing, this bodes well for the efficiency of lin-
ear scanning interfaces (such as RSVP discussed
in Section 2.2) versus spelling grids. The loss in

a) Train: New York Times; Test: New York Times

 2 3 4 5 6 8 10 15 20 25 30 all

2

4

6

8

10

12

14

16

18

20

22

24

N−gram order of character LM

B
it
s
 p

e
r

c
h
a
ra

c
te

r

Linear code

Huffman code

Unigram row/column

b) Train: Enron Emails; Test: Enron Emails

 2 3 4 5 6 8 10 15 20 25 30 all

2

4

6

8

10

12

14

16

18

20

22

24

N−gram order of character LM

B
it
s
 p

e
r

c
h
a
ra

c
te

r

Linear code

Huffman code

Unigram row/column

c) Train: New York Times; Test: Enron Emails

 2 3 4 5 6 8 10 15 20 25 30 all

2

4

6

8

10

12

14

16

18

20

22

24

N−gram order of character LM

B
it
s
 p

e
r

c
h
a
ra

c
te

r

Linear code

Huffman code

Unigram row/column

Figure 5: Bits per character for Huffman and Linear coding
for various n-gram orders of the character-based LM when
training and testing on the New York Times or Enron Email
Dataset; also baseline unigram row/column scanning.

expected keystrokes per character is less than one.

4.2 Dealing with Errors in the input

The second set of results in Figure 6 demonstrates
the effect of error on the number of keystrokes per
character required to type the test set under our
three training/testing conditions for our two cod-
ing approaches. We simulate errors according to
the procedures presented in Section 3.4. On the

a) Train: New York Times; Test: New York Times

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

1

2

3

4

5

6

Probability of Error (times 100)

K
e

y
s
tr

o
k
e

s
 p

e
r

c
h

a
ra

c
te

r

Linear code

Huffman code

b) Train: Enron Emails; Test: Enron Emails

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

1

2

3

4

5

6

Probability of Error (times 100)

K
e

y
s
tr

o
k
e

s
 p

e
r

c
h

a
ra

c
te

r

Linear code

Huffman code

c) Train: New York Times; Test: Enron Emails

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

1

2

3

4

5

6

7

8

9

10

Probability of Error (times 100)

K
e

y
s
tr

o
k
e

s
 p

e
r

c
h

a
ra

c
te

r

Linear code

Huffman code

Figure 6: Keystrokes (bits) per character with varying prob-
abilities of error on the New York Times or Enron Email
datasets. N-gram order is 15 for these trials.

y-axes of the graphs in Figure 6 are the number
of keystrokes per character, and on the x-axis are
the probabilities of error, up to 30 percent4. For
these trials, we used 15-grams, which was shown

4For single trial ERP detection, there will be some level
of classification error. For example, the results in Sellers and
Donchin (2006) achieved ERP classification accuracies in the
73-97 percent range for non-ALS subjects, and in the 61-80
percent range for ALS subjects. Together with random user
errors, an overall error rate of 30% is not unexpected.

in the previous trials to represent converged per-
formance in the absence of errors. We omit the
unigram row/column scanning baseline from the
plot, since its performance degraded to more than
6 keystrokes per character by the relatively low
error rates of two percent, en route to tens of
keystrokes per character at higher error rates.

Interestingly, the absolute keystroke differences
between optimal Huffman coding and linear cod-
ing narrow significantly as the error rate increases.
For example, the graph in Figure 6(a) shows the
New York Times behavior, where the absolute dif-
ference reaches just a half keystroke per character
at 25% error rate, and just a quarter keystroke per
character at 30% error rate. Similar trends occur in
the other graphs. Unlike the prior result, demon-
strating that more peaked language models reduce
the difference between Huffman and linear coding,
this result was unexpected. The implications for
actual text input systems may be large, since the
interface flexibility provided by linear coding may
in fact lead to simpler interfaces, hence potentially
lower error rates (and fewer keystrokes per char-
acter) than Huffman coding interfaces. The dotted
lines in the plots are included to ease comparison
between linear coding and Huffman coding data
points with the same number of keystrokes per
character. Note that, for the NYT train/test condi-
tion, at 25 percent, the linear coding keystrokes per
character are the same as that achieved by Huff-
man coding at 28 percent, much less difference
than at lower error rates. Similar results hold on
the Enron Email dataset, although for the out-of-
domain trial – trained on NYT but tested on En-
ron – the differences are much larger. This under-
lines the point that weaker language models bene-
fit far more from Huffman coding that richer mod-
els. With a stream of supervised adaptation data
available as the typing interface is used, models
can be personalized and this difference reduced.

5 Summary and Future directions

In summary, we have presented language model-
ing methods for binary response typing interfaces,
along with empirical results that illustrate the po-
tential viability of linear scan user interfaces as an
alternative to spelling grids for the most impaired
users. As far as we know, this paper is the first to
present of a method for integrating the probability
of random keystroke error into the binary coding
method; and the first to show the shrinking dif-

ference between Huffman and linear coding with
higher error rates. If simpler linear scan interfaces
can lead to even small reductions in error rates, the
number of keystrokes required per character may
even be less with such an interface than with those
allowing for Huffman coding. We believe that this
result will hold with richer language models and
contextually sensitive error modeling.

Future work will include controlled human
studies using various binary coding strategies and
scanning methods. Also, we will look at richer
language modeling methods, including maximum
entropy models using a variety of features. Ulti-
mately, we plan to test a BCI interface using an
RSVP approach with language modeling and lin-
ear codes. This paper represents a first (promising)
step towards simple typing interfaces for the most
impaired users.

References
D. Anson, P. Moist, M. Przywars, H. Wells, H. Saylor,

and H. Maxime. 2004. The effects of word comple-
tion and word prediction on typing rates using on-
screen keyboards. Assistive Technology, 18(2):146–
154.

J.-D. Bauby. 1997. The Diving Bell and the Butterfly.
Knopf, New York.

B. Blankertz, G. Dornhege, M. Krauledat, and K.R.
Müller. 2006. The berlin brain-computer interface:
EEG-based communication without subject training.
IEEE Transactions on Neural Systems and Rehabil-
itation Engineering, 14(2):147–152.

B. Carpenter. 2005. Scaling high-order character lan-
guage models to gigabytes. In Proceedings of the
ACL Workshop on Software, pages 86–99.

Michael Collins. 2002. Discriminative training meth-
ods for hidden markov models: Theory and experi-
ments with perceptron algorithms. In Proceedings
of the First Conference on Empirical Methods in
Natural Language Processing (EMNLP-96), pages
1–8.

J.J. Darragh, I.H. Witten, and M.L. James. 1990. The
reactive keyboard: A predictive typing aid. Com-
puter, 23(11):41–49.

L.A. Farwell and E. Donchin. 1988. Talking off the top
of your head: toward a mental prosthesis utilizing
event-related brain potentials. Electroenceph Clin.
Neurophysiol., 70:510–523.

A.D. Gerson, L.C. Parra, and P. Sajda. 2005. Cor-
tical origins of response time variability during
rapid discrimination of visual objects. NeuroImage,
28(2):326–341.

D. Gusfield. 1997. Algorithms on Strings, Trees,
and Sequences. Cambridge University Press, Cam-
bridge, UK.

J.P. Hansen, A.S. Johansen, D.W. Hansen, K. Itoh, and
S. Mashino. 2003. Language technology in a pre-
dictive, restricted on-screen keyboard with ambigu-
ous layout for severely disabled people. In Proceed-
ings of EACL Workshop on Language Modeling for
Text Entry Methods.

D.A. Huffman. 1952. A method for the construction
of minimum redundancy codes. In Proceedings of
the IRE, volume 40(9), pages 1098–1101.

Reinhard Kneser and Hermann Ney. 1995. Improved
backing-off for m-gram language modeling. In Pro-
ceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP),
pages 181–184.

John Lafferty, Andrew McCallum, and Fernando
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data. In Proceedings of the 18th Interna-
tional Conference on Machine Learning, pages 282–
289.

J. Li and G. Hirst. 2005. Semantic knowledge in word
completion. In Proceedings of the 7th International
ACM Conference on Computers and Accessibility.

S. Mathan, D. Erdogmus, Y. Huang, M. Pavel,
P. Ververs, J. Carciofini, M. Dorneich, and S. Whit-
low. 2008. Rapid image analysis using neural sig-
nals. In Proceedings of the ACM Conference on
Human Factors in Computing Systems (CHI), pages
3309–3314.

J. Perelmouter and N. Birbaumer. 2000. A binary
spelling interface with random errors. IEEE Trans-
actions on Rehabilitation Engineering, 8(2):227–
232.

Brian Roark, Murat Saraclar, and Michael Collins.
2007. Discriminative n-gram language modeling.
Computer Speech and Language, 21(2):373–392.

I. Schadle. 2004. Sibyl: AAC system using NLP tech-
niques. In Proceedings of the 9th International Con-
ference on Computers Helping People with Special
needs (ICCHP), pages 1109–1015.

E.W. Sellers and E. Donchin. 2006. A p300-based
brain-computer interface: initial tests by als patients.
Clinical Neuropsysiology, 117:538–548.

E.W. Sellers, G. Schalk, and E. Donchin. 2003. The
p300 as a typing tool: tests of brain-computer inter-
face with an als patient. Psychophysiology, 40:77.

C.E. Shannon. 1950. Prediction and entropy of printed
English. Bell System Technical Journal, 30:50–64.

M. Silfverberg, I.S. MacKenzie, and P. Korhonen.
2000. Predicting text entry speed on mobile phones.
In Proceedings of the ACM Conference on Human
Factors in Computing Systems (CHI), pages 9–16.

K. Tanaka-Ishii. 2006. Word-based predictive text en-
try using adaptive language models. Natural Lan-
guage Engineering, 13(1):51–74.

S. Thorpe, D. Fize, and C. Marlot. 1996. Speed
of processing in the human visual system. Nature,
381:520–522.

K. Trnka, D. Yarrington, K.F. McCoy, and C. Penning-
ton. 2006. Topic modeling in fringe word prediction
for AAC. In Proceedings of the International Con-
ference on Intelligent User Interfaces, pages 276–
278.

K. Trnka, D. Yarrington, J. McCaw, K.F. McCoy, and
C. Pennington. 2007. The effects of word pre-
diction on communication rate for AAC. In Hu-
man Language Technologies 2007: The Conference
of the North American Chapter of the Association
for Computational Linguistics; Companion Volume,
Short Papers, pages 173–176.

H. Trost, J. Matiasek, and M. Baroni. 2005. The lan-
guage component of the FASTY text prediction sys-
tem. Applied Artificial Intelligence, 19(8):743–781.

E. Ukkonen. 1995. On-line construction of suffix-
trees. Algorithmica, 14:249–260.

A. van den Bosch. 2006. All-word prediction as the ul-
timate confusable disambiguation. In Proceedings
of the HLT-NAACL Workshop on Computationally
hard problems and joint inference in speech and lan-
guage processing.

T. Wandmacher and J.Y. Antoine. 2007. Methods
to integrate a language model with semantic infor-
mation for a word prediction component. In Pro-
ceedings of the Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
506–513.

T. Wandmacher, J.Y. Antoine, F. Poirier, and J.P. De-
parte. 2008. Sibylle, an assistive communication
system adapting to the context and its user. ACM
Transactions on Accessible Computing (TACCESS),
1(1):6:1–30.

D.J. Ward, A.F. Blackwell, and D.J.C. MacKay. 2002.
DASHER – a data entry interface using continuous
gestures and language models. Human-Computer
Interaction, 17(2-3):199–228.

S.A. Wills and D.J.C. MacKay. 2006. DASHER –
an efficient writing system for brain computer inter-
faces? IEEE Transactions on Neural Systems and
Rehabilitation Engineering, 14(2):244–246.

I.H. Witten and T.C. Bell. 1991. The zero-frequency
problem: Estimating the probabilities of novel
events in adaptive text compression. IEEE Trans-
actions on Information Theory, 37(4):1085–1094.

