
Expected surprisal and entropy

Brian Roark

August 25, 2011

Abstract

In this brief technical report, we build off of previous work in calculating surprisal and entropy measures
from an incremental parser [1] and presented measures of Expected Surprisal, which are related to some
of the entropy measures defined in the previous work.

1 Grammars, derivations, prefix probabilities1

A probabilistic context-free grammar (PCFG) G = (V, T, S†, P, ρ) consists of a set of non-terminal vari-
ables V ; a set of terminal items (words) T ; a special start non-terminal S† ∈ V ; a set of rule productions P
of the form A → α for A ∈ V , α ∈ (V ∪ T)∗; and a function ρ that assigns probabilities to each rule in P
such that for any given non-terminal symbol X ∈ V ,

∑
α ρ(X → α) = 1.

For a given rule A → α ∈ P , let the function RHS return the right-hand side of the rule, i.e.,
RHS(A→ α) = α. Without loss of generality, we will assume that for every rule A → α ∈ P , one of
two cases holds: either RHS(A → α) ∈ T or RHS(A → α) ∈ V ∗. That is, the right-hand side sequences
consist of either (1) exactly one terminal item, or (2) zero or more non-terminals.

Let W ∈ Tn be a terminal string of length n, i.e., W = W1 . . .Wn and |W | = n. Let W [i, j]
denote the substring beginning at word Wi and ending at word Wj of the string. Then W|W | is the last
word in the string, and W [1, |W |] is the string as a whole. Adjacent strings represent concatenation, i.e.,
W [1, i]W [i+1, j] =W [1, j]. Thus W [1, i]w represents the string where Wi+1 = w.

We can define a “derives” relation (denoted⇒G for a given PCFG G) as follows: βAγ ⇒G βαγ if and
only if A → α ∈ P . A string W ∈ T ∗ is in the language of a grammar G if and only if S† +⇒G W , i.e., a
sequence of one or more derivation steps yields the string from the start non-terminal. A leftmost derivation
begins with S† and each derivation step replaces the leftmost non-terminal A in the yield with some α such
thatA→ α ∈ P . For a leftmost derivation S† ∗⇒G α, where α ∈ (V ∪T)∗, the sequence of derivation steps
that yield α can be represented as a tree, with the start symbol S† at the root, and the “yield” sequence α at
the leaves of the tree. A complete tree has only terminal items in the yield, i.e., α ∈ T ∗; a partial tree has
some non-terminal items in the yield. With a leftmost derivation, the yield α = βγ partitions into an initial
sequence of terminals β ∈ T ∗ followed by a sequence of non-terminals γ ∈ V ∗. For a complete derivation,
γ = ε; for a partial derivation γ ∈ V +, i.e., one or more non-terminals. Let T (G,W [1, i]) be the set of
complete trees with W [1, i] as the yield of the tree, given PCFG G.

A leftmost derivationD consists of a sequence of |D| steps. LetDi represent the ith step in the derivation
D, and D[i, j] represent the subsequence of steps in D beginning with Di and ending with Dj . Note that
D|D| is the last step in the derivation, and D[1, |D|] is the derivation as a whole. Each step Di in the
derivation is a rule in G, i.e., Di ∈ P for all i. The probability of the derivation and the corresponding tree

1Parts of these appendices are revisions of content that first appeared in [1].

1

is:

ρ(D) =
m∏
i=1

ρ(Di) (1)

The terminal yield of a leftmost derivation, which we will denote TermYield(D), is the sequence of terminal
items at the leaves of the tree defined by D. Let D(G,W [1, i]) be the set of all possible leftmost derivations
D (with respect to G) such that TermYield(D) =W [1, i] and RHS(D|D|) =Wi. These are the set of partial
leftmost derivations with W [1, i] as the terminal yield whose last step used a production with terminal Wi

on the right-hand side. The prefix probability of W [1, i] with respect to G is

PrefixProbG(W [1, i]) =
∑

D∈D(G,W [1,i])

ρ(D) (2)

From this prefix probability, we can calculate the conditional probability of each wordw ∈ T in the terminal
vocabulary, given the preceding sequence W [1, i] as follows:

PG(w |W [1, i]) =
PrefixProbG(W [1, i]w)∑

w′∈T PrefixProbG(W [1, i]w′)

=
PrefixProbG(W [1, i]w)

PrefixProbG(W [1, i])
(3)

This, in fact, is precisely the conditional probability that is used for language modeling for such ap-
plications as speech recognition and machine translation, which was the motivation for various syntactic
language modeling approaches [2, 3, 4, 5].

As with language modeling, it is important to model the end of the string as well, usually with an
explicit end symbol, e.g., </s>. For a string W [1, i], we can calculate its prefix probability as shown
above. To calculate its complete probability, we must sum the probabilities over the set of complete trees
T (G,W [1, i]). In such a way, we can calculate the conditional probability of ending the string with </s>
given W [1, i] as follows:

PG(</s> |W [1, i]) =

∑
D∈T (G,W [1,i]) ρ(D)

PrefixProbG(W [1, i])
(4)

2 Incremental top-down parsing

In this section, we review relevant details of the Roark [5] incremental top-down parser, as configured for
use here. As presented in [6], the probabilities in the PCFG are smoothed so that the parser is guaranteed
not to fail due to garden pathing, despite following a beam search strategy. Hence there is always a non-zero
prefix probability as defined in Eq. 2.

The parser follows a top-down leftmost derivation strategy. The grammar is factored so that every
production has either a single terminal item on the right-hand side or is of the form A→ B A-B, where
A,B ∈ V and the factored A-B category can expand to any sequence of children categories of A that can
follow B. This factorization of n-ary productions continues to nullary factored productions, i.e., the end of
the original production A→ B1. . . Bn is signaled with an empty production A-B1-. . . -Bn→ ε.

The parser maintains a set of possible connected derivations, weighted via the PCFG. It uses a beam
search, whereby the highest scoring derivations are worked on first, and derivations that fall outside of the
beam are discarded. The reader is referred to Roark [5, 6] for specifics about the beam search.

2

The model conditions the probability of each production on features extracted from the partial tree,
including non-local node labels such as parents, grandparents and siblings from the left-context, as well as
c-commanding lexical items. Hence this is a lexicalized grammar, though the incremental nature precludes
a general head-first strategy, rather one that looks to the left-context for c-commanding lexical items.

To avoid some of the early prediction of structure, the version of the Roark parser that we used performs
an additional grammar transformation beyond the simple factorization already described – a selective left-
corner transform of left-recursive productions [7]. In the transformed structure, slash categories are used
to avoid predicting left-recursive structure until some explicit indication of modification is present, e.g., a
preposition.

The final step in parsing, following the last word in the string, is to “complete” all non-terminals in the
yield of the tree. All of these open non-terminals are composite factored categories, such as S-NP-VP, which
are “completed” by rewriting to ε. The probability of these ε productions is what allows for the calculation
of the conditional probability of ending the string, shown in Eq. 4.

One final note about the size of the non-terminal set and the intractability of exact inference for such a
scenario. The non-terminal set not only includes the original atomic non-terminals of the grammar, but also
any categories created by grammar factorization (S-NP) or the left-corner transform (NP/NP). Additionally,
however, to remain context-free, the non-terminal set must include categories that incorporate non-local
features used by the statistical model into their label, including parents, grandparents and sibling categories
in the left-context, as well as c-commanding lexical heads. These non-local features must be made local
by encoding them in the non-terminal labels, leading to a very large non-terminal set and intractable ex-
act inference. Heavy smoothing is required when estimating the resulting PCFG. The benefit of such a
non-terminal set is a rich model, which enables a more peaked statistical distribution around high quality
syntactic structures and thus more effective pruning of the search space. The fully connected left-context
produced by top-down derivation strategies provides very rich features for the stochastic parsing models.
See Roark [5, 6] for discussion of these issues.

3 Parser and grammar derived measures

3.1 Surprisal

The surprisal at word Wi is the negative log probability of Wi given the preceding words. Using prefix
probabilities, this can be calculated as:

SG(Wi) = − log
PrefixProbG(W [1, i])

PrefixProbG(W [1, i− 1])
(5)

Substituting equation 2 into this, we get

SG(Wi) = − log

∑
D∈D(G,W [1,i]) ρ(D)∑
D∈D(G,W [1,i−1]) ρ(D)

(6)

If we are using a beam-search parser, some of the derivations are pruned away. Let B(G,W [1, i]) ⊆
D(G,W [1, i]) be the set of derivations in the beam. Then the surprisal can be approximated as

SG(Wi) ≈ − log

∑
D∈B(G,W [1,i]) ρ(D)∑
D∈B(G,W [1,i−1]) ρ(D)

(7)

Any pruning in the beam search will result in a deficient probability distribution, i.e., a distribution that
sums to less than 1. Roark’s thesis (2001) showed that the amount of probability mass lost for this particular
approach is very low, hence this provides a very tight bound on the actual surprisal given the model.

3

3.2 Lexical and Syntactic surprisal

High surprisal scores result when the prefix probability at word Wi is low relative to the prefix probability at
word Wi−1. Sometimes this is due to the identity of Wi, i.e., it is a surprising word given the context. Other
times, it may not be the lexical identity of the word so much as the syntactic structure that must be created
to integrate the word into the derivations. One would like to tease surprisal apart into “syntactic surprisal”
versus “lexical surprisal”, which would capture this intuition of the lexical versus syntactic dimensions to
the score. Our solution to this has the beneficial property of producing two scores whose sum equals the
original surprisal score.

The original surprisal score is calculated via sets of partial derivations at the point when each wordWi is
integrated into the syntactic structure, D(G,W [1, i]). We then calculate the ratio from point to point in se-
quence. To tease apart the lexical and syntactic surprisal, we will consider sets of partial derivations immedi-
ately before each wordWi is integrated into the syntactic structure, i.e.,D[1, |D|−1] forD ∈ D(G,W [1, i]).
Recall that the last derivation move for every derivation in the set is from the POS-tag to the lexical item.
Hence the sequence of derivation moves that excludes the last one includes all structure except the word
Wi. Let S(D) = {D[1, |D|−1] : D ∈ D}, i.e., the set of derivations achieved by removing the last step of
all derivations in D. Then the syntactic surprisal is calculated as:

SynSG(Wi) = − log

∑
D∈S(D(G,W [1,i])) ρ(D)∑
D∈D(G,W [1,i−1]) ρ(D)

(8)

and the lexical surprisal is calculated as:

LexSG(Wi) = − log

∑
D∈D(G,W [1,i]) ρ(D)∑

D∈S(D(G,W [1,i])) ρ(D)
(9)

Note that the numerator of SynSG(Wi) is the denominator of LexSG(Wi), hence they sum to form total
surprisal SG(Wi). As with total surprisal, these measures can be defined either for the full setD(G,W [1, i])
or for a pruned beam of derivations B(G,W [1, i]) ⊆ D(G,W [1, i]).

3.3 Entropy

Entropy scores of the sort advocated by Hale [8, 9] involve calculation over the set of complete derivations
consistent with the set of partial derivations. Hale performs this calculation efficiently via matrix inversion,
which explains the use of relatively small-scale grammars with tractably sized non-terminal sets. Such
methods are not tractable for the kinds of richly conditioned, large-scale PCFGs that we advocate using
here. At each word in the string, the Roark [5] top-down parser provides access to the weighted set of partial
analyses in the beam; the set of complete derivations consistent with these is not immediately accessible,
hence additional work is required to calculate such measures.

Let H(D) be the entropy over a set of derivations D, calculated as follows:

H(D) = −
∑
D∈D

ρ(D)∑
D′∈D ρ(D

′)
log

ρ(D)∑
D′∈D ρ(D

′)
(10)

If the set of derivations D = D(G,W [1, i]) is a set of partial derivations for string W [1, i], then H(D)
is a measure of uncertainty over the partial derivations, i.e., the uncertainty regarding the correct analysis
of what has already been processed. This can be calculated directly from the existing parser operations. If

4

the set of derivations are the complete derivations consistent with the set of partial derivations – complete
derivations that could occur over the set of possible continuations of the string – then this is a measure of
the uncertainty about what is yet to come. We would like measures that can capture this distinction between
(a) uncertainty of what has already been processed (“current ambiguity”) versus (b) uncertainty of what is
yet to be processed (“predictive entropy”). In addition, as with surprisal, we would like to tease apart the
syntactic uncertainty versus lexical uncertainty.

To calculate the predictive entropy after word sequence W [1, i], we modify the parser as follows: the
parser extends the set of partial derivations to include all possible next words (the entire vocabulary plus
</s>), and calculates the entropy over that set. This measure is calculated from just one additional word
beyond the current word, and hence is an approximation to Hale’s conditional entropy of grammatical con-
tinuations, which is over complete derivations. We will denote this as H1

G(W [1, i]) and calculate it as
follows:

H1
G(W [1, i]) = H(

⋃
w∈T∪{</s>}

D(G,W [1, i]w)) (11)

This is performing a predictive step that the baseline parser does not perform, extending the parses to all
possible next words. As a practical matter, these values are calculated within the Roark parser as follows. A
“dummy” word is created that can be assigned every POS-tag, and the parser extends from the current state
to this dummy word. (The beam threshold is greatly expanded to allow for many possible extensions.) Then
every word in the vocabulary is substituted for the word, and the appropriate probabilities calculated over
the beam. Finally, the actual next word is substituted, the beam threshold is reduced to the actual working
threshold, and the requisite number of analyses are advanced to continue parsing the string. This represents
a significant amount of additional work for the parser – particularly for vocabulary sizes that we currently
use, on the order of tens of thousands of words.

3.4 Expected Surprisal

Unlike surprisal, entropy does not decompose straightforwardly into syntactic and lexical components that
sum to the original composite measure. However, one version of a predictive entropy measure, termed
“lexical entropy” in [1] does move away from the distribution over derivations towards the distribution over
words, defined in terms of the conditional probabilities derived from prefix probabilities as defined in Eq. 3.

LexH1
G(W [1, i]) = −

∑
w∈T∪{</s>}

PG(w |W [1, i]) logPG(w |W [1, i]) (12)

Note, however, that this so-called “lexical entropy” is exactly the expected value of surprisal (Equation 6),
which is what we will call it. In expected value notation, this is E [SG(Wi)] and

E [SG(Wi)] = −
∑

w∈T∪{</s>}

PG(w |W [1, i]) log

∑
D∈D(G,W [1,i]w) ρ(D)∑
D∈D(G,W [1,i]) ρ(D)

(13)

In the same way, we can define the expected value of our other two surprisal measures (lexical and syntactic).
The expected syntactic surprisal E [SynSG(Wi)] is the sum over all possible following words (including end-
of-string) of the probability of that word times the syntactic surprisal at that word. Similarly, the expected
lexical surprisal E [LexSG(Wi)] is the sum over all possible following words (including end-of-string) of the

5

probability of the word times the lexical surprisal at that word. Recall that S(D) = {D[1, |D|−1] : D ∈ D},
i.e., the set of derivations achieved by removing the last step of all derivations in D. Then

E [SynSG(Wi)] = −
∑

w∈T∪{</s>}

PG(w |W [1, i]) log

∑
D∈S(D(G,W [1,i])) ρ(D)∑
D∈D(G,W [1,i−1]) ρ(D)

(14)

and

E [LexSG(Wi)] = −
∑

w∈T∪{</s>}

PG(w |W [1, i]) log

∑
D∈D(G,W [1,i]) ρ(D)∑

D∈S(D(G,W [1,i])) ρ(D)
(15)

Once we have defined the expected surprisal measures, we can “normalize” the actual observed surprisal
by subtracting the expected value before the word was seen.

SG(Wi) = SG(Wi)− E [SG(Wi−1)] (16)

SynSG(Wi) = SynSG(Wi)− E [SynSG(Wi−1)] (17)

LexSG(Wi) = LexSG(Wi)− E [LexSG(Wi−1)] (18)

For these normalized measures, a value above zero means that the surprisal was greater than expected,
and lower than zero means lower than expected. This may capture distinctions between contexts which make
weak predictions about subsequent content from those which make strong predictions about subsequent
content.

Note that the nice property that the lexical and syntactic components sum to the total surprisal continues
to hold for the expected values and normalized measures:

E [SG(Wi)] = E [SynSG(Wi)] + E [LexSG(Wi)] (19)

SG(Wi) = SynSG(Wi) + LexSG(Wi) (20)

References

[1] B. Roark, A. Bachrach, C. Cardenas, and C. Pallier, “Deriving lexical and syntactic expectation-based
measures for psycholinguistic modeling via incremental top-down parsing,” in Proceedings of the Con-
ference on Empirical Methods in Natural Language Processing (EMNLP), 2009, pp. 324–333.

[2] F. Jelinek and J. Lafferty, “Computation of the probability of initial substring generation by stochastic
context-free grammars,” Computational Linguistics, vol. 17, no. 3, pp. 315–323, 1991.

[3] A. Stolcke, “An efficient probabilistic context-free parsing algorithm that computes prefix probabilities,”
Computational Linguistics, vol. 21, no. 2, pp. 165–202, 1995.

[4] C. Chelba and F. Jelinek, “Exploiting syntactic structure for language modeling,” in Proceedings of
ACL-COLING, 1998, pp. 225–231.

[5] B. Roark, “Probabilistic top-down parsing and language modeling,” Computational Linguistics, vol.
27, no. 2, pp. 249–276, 2001.

6

[6] B. Roark, “Robust garden path parsing,” Natural Language Engineering, vol. 10, no. 1, pp. 1–24, 2004.

[7] M. Johnson and B. Roark, “Compact non-left-recursive grammars using the selective left-corner trans-
form and factoring,” in Proceedings of COLING, 2000, pp. 355–361.

[8] J.T. Hale, “The information conveyed by words in sentences,” Journal of Psycholinguistic Research,
vol. 32, no. 2, pp. 101–123, 2003.

[9] J.T. Hale, “Uncertainty about the rest of the sentence,” Cognitive Science, vol. 30, no. 4, pp. 643–672,
2006.

7

