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Abstract

Probabilistic sequence models estimated from large corpora typically require smoothing
techniques to reserve some probability mass for unobservedevents. These techniques fail
to distinguish between events unobserved due to sampling limitations,sampling zeros, and
those unobserved due to structural reasons such as syntactic constraints,structural zeros.
We investigate the use of statistical tests to determine structural zeros, to avoid assigning
them probability mass and thereby improve model accuracy. Experimental results on a
context-free parsing task demonstrate the usefulness of these techniques.

1 Motivation

The design of accurate probabilistic models for sequences is a key problem in a variety of applications in
computational biology and natural language processing. Probabilistic models for letters, phonemes, words, or
word classes (e.g. part-of-speech tags) are crucial components of information extraction, speech recognition
and synthesis, or handwriting recognition systems [7, 9, 4,11]. Similar models for DNA or protein sequences
are also of considerable importance in bioinformatics [6, 12].

Probabilistic models for sequences are typically derived from large datasets. In natural language processing
applications, the corpora used often contain tens or hundreds of million of tokens. Even so, one of the key
problems faced in the design of these models is that of data sparsity: some sequences may not appear, even in
very large samples. Numeroussmoothingtechniques have been introduced to deal with this sparsity problem
by reserving some probability mass for unobserved sequences (see, e.g., [9]). A feature common to all of
these techniques is that they do not differentiate between sequences that were unobserved due to the limited
size of the sample, which we refer to assampling zeros, from sequences that were unobserved due to their
being grammatically forbidden or otherwise illicit, whichwe call structural zeros. Smoothing techniques
reserve some probability mass both for sampling and structural zeros.

If some or all structural zeros were known in advance, they could be excluded from the model, or equivalently
assigned no probability mass. The probability mass therebyfreed up could be non-negligible. It could be
redistributed among possible sequences in a way that could improve the quality of the overall model. For any
given sequence modeling task, we cannot expect to have existing lists of such ill-formed sequences. Instead,
we propose to use a large corpus to infer that some sequences are structurally impossible using statistical
criteria and to use that information to improve the model derived from that corpus.

Note that our detection of structural zeros and the changes it implies to the design of a statistical model are not
related to the so-calledzero-inflated models[10]. The purpose of zero-inflated models is to account for excess
zeros (zero counts greater than expected), typically by increasing a model’s probability of zero, regardless of
their being structural or sampling zeros.

To illustrate the benefit of our approach, we investigate modeling sequences of grammatical categories on
the right-hand side (RHS) of rules in a probabilistic context-free grammar (PCFG). PCFGs induced from
commonly used treebanks, such as the Penn Wall St. Journal (WSJ) Treebank, contain many productions with
a lengthy sequence of categories on the RHS, causing both a sparse-data problem (many possible productions
are unobserved) and a processing efficiency problem. Certain grammar factorizations address both issues,
but allocate significant probability mass to ungrammaticalstructures, leading to large reductions in parsing
accuracy. We show that detecting and removing structural zeros from a factored PCFG provides the benefits
of the factorization with greatly improved parsing accuracy.
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The paper is organized as follows. We first discuss several statistical criteria for detecting structural zeros
and compare them by applying them to a large corpus. Section 3describes the application of our method to
context-free grammar factorization for chart parsing. Section 4 reports in detail the results of our experiments
with a probabilistic context-free parser trained on a largecorpus of about one million words.

2 Statistical Criteria

The main idea behind our method for detecting structural zeros is to search for events that are very frequent but
that do not co-occur. For example, to create a statistical language model for English, i.e. a probabilistic model
estimating the probability of any sequence of English words, we may wish to rule out some ungrammatical
sequences. We can use a large corpus to count the number of occurrences of any sequence of words. If
the counts of two sequencesx andy are very large but the count of their co-occurrence is zero, then the
co-occurrence ofx andy can be viewed as a candidate for the list of events that are structurally inadmissible.

In the simplest case, we can choosex andy to be single words and count how oftenx is followed byy. For
example, the words “of” and “the” typically occur extremely frequently in a large sample of English text,
but if the count of “the of” is zero, then we can view “the of” as a candidate structural zero. In general, we
may wish to relax this condition by allowing the count of sequencexy to be non-zero and only require it
to be very low compared to the counts ofx andy. This is because corpora may contain noisy data causing
illicit sequences to infrequently appear. But, to simplifymatters, in what follows we will consider strictly
unobserved sequences

We can similarly view a trigramxyz as a structural zero, when it does not appear, or very seldom appears
in the data while the bigramsxy andyz appear very frequently, e.g. “brand new york”. More generally, we
can distinguish ann-gram sequence as a structural zero if the counts of its subsequences are relatively high.

While the examples just discussed were with sequences of words, the same approach applies to other sequence
models. For example, a context-free grammar induced from the Penn Treebank may have a rule of the form
NP→DT JJ JJ NN NN NNS to handle such noun phrases as “the hot tasty duck beak soups.” In a treebank,
a similar rule, such as NP→DT RB JJ JJ NN NN NNS, which would handle such noun phrases as “the
very hot tasty duck beak soups,” might be unobserved. Smoothing techniques can be appliedto reserve
some probability mass for such unobserved rules. But, thesetechniques would then similarly assign some
probability mass to many truly ungrammatical rules as well.In this case, we can look at the co-occurrence of
categories on the right-hand side of productions with a particular left-hand side, to infer which combinations
are illicit.

Different statistical criteria can be used to compare the counts of two events with that of their co-occurrence.
This section briefly introduces several criteria and compares them by applying them to the same corpus.

2.1 Notation

This section describes several statistical criteria to determine if a sequence of two words or categories should
be viewed as a structural zero. These tests can be generalized to longer and more complex sequences, and to
different types of events.

Given a corpusC, and a vocabularyΣ, we denote bycx the number of occurrences ofx in C. Let n be the
total number of observations inC. We will denote byx̄ the set{y ∈ Σ : y 6= x}. Hencecx̄ = n − cx.
Let p(x) = cx

n
, and fora ∈ Σ, letp(a|x) = cxa

cx
. Note thatcx̄a = ca − cxa.

2.2 Mutual information

The mutual information between two random variablesX andY is defined as

I(X; Y ) =
∑

x,y

p(x, y) log
p(x, y)

p(x)p(y)
. (1)

For a particular word sequence of length twoab, this suggests the following statistic:

I(ab) = log p(ab) − log p(a) − log p(b)

= log cab − log ca − log cb + log n (2)
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Unfortunately, forcab = 0, I(ab) is not finite. If we assume, however, that all unobserved sequences are
given someε count, then

I(ab) = K − log ca − log cb, (3)

whereK is a constant. We need these statistics only for ranking purposes, thus we can ignore the constant
factor.

2.3 Log odds ratio

Another statistic that, as with mutual information, is ill-defined with zeros, is thelog odds ratio:

log(θ̂) = log cab + log cāb̄ − log cāb − log cab̄. (4)

Here again, ifcab = 0, log(θ̂) is not finite. But, if we give all unobserved bigrams a small count ε, the
expression becomes

log(θ̂) = K + log cāb̄ − log cb − log ca. (5)

2.4 Pearson chi-squared

For anyi, j ∈ Σ, defineµ̂ij =
cicj

n
. The Pearson chi-squared test of independence is then defined as

follows:

X 2 =
(cab − µ̂ab)

2

µ̂ab

+
(cāb − µ̂āb)

2

µ̂āb

+
(cab̄ − µ̂ab̄)

2

µ̂ab̄

+
(cāb̄ − µ̂āb̄)

2

µ̂āb̄

=
(ncab − cacb)

2

ncacb

+
(ncāb − cācb)

2

ncācb

+
(ncab̄ − cacb̄)

2

ncacb̄

+
(ncāb̄ − cācb̄)

2

ncācb̄

.

In the case of interest for us,cab = 0 and the statistic simplifies as follows:

X 2 =
cacb

n
+

(ncb − cācb)
2

ncācb

+
(nca − cacb̄)

2

ncacb̄

+
(n(n − ca − cb) − cācb̄)

2

ncācb̄

=
cacb

n
+

cbc
2
a

ncā

+
cac2

b

ncb̄

+
c2

ac2
b

ncācb̄

=
ncacb

cācb̄

. (6)

2.5 Log likelihood ratio

Pearson’s chi-squared statistic assumes a normal or approximately normal distribution, but that assumption
typically does not hold for the occurrences of rare events [5]. It is then preferable to use the likelihood ratio
statistic which allows us to compare the null hypothesis, that p(b) = p(b|a) = p(b|ā) = cb

n
, with the

hypothesis thatp(b|a) = cab

ca
andp(b|ā) = cāb

cā
. These discrete conditional probabilities are a binomial

distribution, hence the likelihood ratio is

λ =

p(b)cab(1 − p(b))ca−cab

(

ca

cab

)

p(b)cāb(1 − p(b))cā−cāb

(

cā

cāb

)

p(b|a)cab(1 − p(b|a))ca−cab

(

ca

cab

)

p(b|ā)cāb(1 − p(b|ā))cā−cāb

(

cā

cāb

)

=
p(b)cab(1 − p(b))ca−cabp(b)cāb(1 − p(b))cā−cāb

p(b|a)cab(1 − p(b|a))ca−cabp(b|ā)cāb(1 − p(b|ā))cā−cāb

(7)

In the special case wherecab = 0, p(b|ā) = p(b), and this expression can be simplified as follows

λ =
(1 − p(b))cap(b)cāb(1 − p(b))cā−cāb

p(b|ā)cāb(1 − p(b|ā))cā−cāb

= (1 − p(b))ca . (8)

The log likelihood ratio, denotedG2, is known to be asymptoticallyX 2 distributed. In this case

G2 = −2ca log(1 − p(b)) (9)

and with the binomial, this has 1 degree of freedom, hence thedistribution will asymptotically have a mean
of 1 and a standard deviation of

√
2.
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Top 50 list Top 200 list Top 500 list
Statistic X 2 I log(θ̂) X 2 I log(θ̂) X 2 I log(θ̂)

G2 3 1 3 9 4 9 28 13 28
X 2 - 3 0 - 8 0 - 25 0
I - 3 - 8 - 25

Table 1:Maximum difference in rank between different statistics for top 50, 200 and 500 scoring unseen bigrams in 4M
word Switchboard corpus.

2.6 Ranking differences

Although all of these statistics are measuring nearly the same thing, i.e., the frequency of the individual
events, each statistic is slightly different. To get a senseof how these differences affect the ranking, we
generated the lists of the most surprising zero bigrams according to each statistic, and compared their rank
order. For each list ofk bigrams, we look for the largest difference in rank between two statistics. Table
1 shows the differences found, when the bigram statistics are gathered from a 4 million-word Switchboard
corpus. The log odds ratio and Pearson chi-squared statistics give identical rankings. The log likelihood ratio
and mutual information statistics are closer together, butoverall the lists given by all of the statistics are quite
similar. In view of this similarity, we chose to use in our experiments the log likelihood ratio test.

3 Application to Statistical Parsing

We chose to illustrate these techniques within the context of probabilistic grammar estimation because
smoothing techniques are widely used in this domain, but also because adjacent categories on the right-
hand side (RHS) of a rule are by definition strongly constrained by grammaticality. With a relatively small
non-terminal vocabulary (about 100), this makes it for a nice test-bed for detection and use of structural zeros.

3.1 Definitions

A context-free grammar (CFG)G = (V, T, S†, P ) consists of a set of non-terminal symbolsV, a set of
terminal symbolsT, a start symbolS† ∈ V, a set of rule productionsP of the form: A → α, where
A ∈ V andα ∈ (V ∪ T )∗. A PCFG is a CFG with a probability assigned to each rule, suchthat the
probabilities of all rules expanding a given non-terminal sum to one; specifically, each RHS has a probability
given the left-hand side of the rule. For all of the trials reported here, we trained a PCFG on sections 2-21
of the Penn WSJ Treebank (40k sentences, 936k words), and evaluated on section 24 (1346 sentences, 32K
words). True part-of-speech tags are taken as terminals, and words are ignored.

3.2 Grammar smoothing and factorization

PCFGs induced from the Penn Treebank have many productions with very long sequences of non-terminals
on the RHS. Probability estimates of the RHS given the left-hand side are often smoothed by making a
Markov assumption regarding the conditional independenceof a category on those more thank categories
away [4, 2].

p(X → Y1 . . . Yn) = p(Y1|X)

n
∏

i=2

p(Yi|X, Y1 . . . Yi−1)

≈ p(Y1|X)

n
∏

i=2

p(Yi|X, Yi−k . . . Yi−1) (10)

This Markov assumption provides probability mass to unobserved productions, whether those productions
are sampling or structural zeros.

Making a Markov assumption on productions is closely related to grammar transformations required for
certain efficient parsing algorithms. For example, the CYK parsing algorithm [8, 13] takes as input a binarized
PCFG, i.e. a grammar with only binary productions1. PCFGs are induced from a treebank, which has been

1Our implementation has been extended to allow for unary productions in the PCFG.
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(a) (b) (c) (d) (e)

Figure 1:Five representations of ann-ary production,n = 4. (a) Original production (b) Right-factored production
(c) Right-factored Markov-2 (d) Right-factored Markov-1 (e) Right-factored Markov-0

PCFG Time (s) Words/s |NT| LR LP F-measure
Right-factored 4171 7.8 10105 69.4 73.9 71.6
Right-factored, Markov-2 1145 28.3 2492 69.2 74.0 71.5
Right-factored, Markov-1 281 115.1 564 68.3 73.3 70.7
Right-factored, Markov-0 120 269.6 99 61.4 65.7 63.5

Table 2:Baseline results of CYK parser using different probabilistic context-free grammars. Grammars are trained from
sections 2-21 of the Penn WSJ Treebank and tested on section 24, given the true POS-tags. The second and third columns
report the total parsing time in second and the number of words parsed per second. The number of non-terminals,|NT|,
is indicated in the next column. The last three columns show the precision, recall and F-measure.

factored so thatn-ary productions withn > 2 become sequences ofn − 1 binary productions. Full right-
factorization involves creating composite non-terminalswhich group together the finaln−1 categories from
the RHS of ann-ary production. For example, the original production NP→ DT JJ NN NNS shown in
figure 1(a) is factored into three binary rules, as shown in figure 1(b). Note that a PCFG induced from such
right-factored trees is weakly equivalent to a PCFG inducedfrom the original treebank, i.e. it describes the
same language.

From such a factorization, one can make a Markov assumption for estimating the production probabilities
by simply recording only the labels of the firstk children dominated by the composite factored label. Fig-
ure 1 (c), (d), and (e) show right-factored trees of Markov orders 2, 1 and 0 respectively. In addition to a
smoothing benefit as mentioned above, these factorizationsreduce the size of the non-terminal set, which in
turn improves CYK efficiency. The efficiency benefit of makinga Markov assumption in factorization can
be substantial, since the CYK algorithm has complexity O(n3|V0|(|V0|2 + |Vf |)), wheren is the length
of the string,|V0| is the size of the original, non-factored non-terminal set,and|Vf | is the size of the set
of new, factored non-terminals2. With standard right-factorization, as in figure 1 (b), the non-terminal set
for the PCFG induced from sections 2-21 of the Penn WSJ Treebank grows from its original size of 72 to
10105. With a Markov factorization of orders 2, 1 and 0 we get non-terminal sets of size 2492, 564, and 99,
respectively.

These reductions in the size of the non-terminal set from theoriginal factored grammar results in an order
of magnitude reduction in complexity of the CYK algorithm. One common strategy in statistical parsing is
to first build a chart with a simple PCFG, which is then pruned prior to evaluating parses with richer, higher
complexity models [4, 2]. As a result, producing such a chartas efficiently as possible is very important
[3, 1], making these factorizations particularly useful.

Table 2 shows baseline results for standard right-factorization and factorization with Markov orders 0-2.
Training consists of applying a particular grammar factorization to the treebank prior to inducing a PCFG
using maximum likelihood (relative frequency) estimation. Testing consists of CYK parsing of the evaluation
set with the induced grammar, then de-transforming the maximum likelihood parse back to the original format
for evaluation against the reference parse. Evaluation includes the standard PARSEVAL measures labeled
precision (LP) and labeled recall (LR), plus the harmonic mean (F-measure) of these two scores.

From these results, we can see the large efficiency benefit of the Markov assumption, as the size of the

2Every binary production in the factored grammar must have one of the original non-terminals as the first child, hence
there are|V0| possibilities for first child and|V | = |V0| + |Vf | possibilities for second child. If the second child is in
V0, then there are2|V0| possible parents. If the second child is in|Vf |, then there are just 2 possible parents, since the
factored category encodes parent information.
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Unobs. productions G2 score Req. NTs
S→ α VP VPγ 24938.2 S:VP
S→ α VP VP .γ 24575.9 S:VP+.
S→ α VP NP VPγ 9096.3 S:NP+VP
S→ α VP , NPγ 7095.0 S:,+NP
S→ α , VP γ 6582.3 S:VP
S→ α , VP .γ 6486.7 S:VP+.
NP→ α DT , γ 6136.9 NP:,
QP→ α CD CD CDγ 5358.6 QP:CD+CD
NP→ α DT , NPγ 2973.8 NP:,+NP
S→ α , , γ 2783.3 S:,

Unobs. productions G2 score Req. NTs
S→ α PP VP .γ 2549.9 S:VP+.
NP→ α DT CC NPγ 2430.5 NP:CC+NP
VP → α TO NPγ 2424.6 VP:NP
NP→ α NNP , NPγ 2410.5 NP:,+NP
S→ α VP ADVP γ 2331.7 S:ADVP
S→ α VP Sγ 2324.9 S:S
S→ α NP CCγ 2105.7 S:CC
NP→ α PRP NNPγ 2072.2 NP:NNP
NP→ α NNP NPγ 2048.9 NP:NP
S→ α NP CC Sγ 2024.9 S:CC+S

Table 3:Top 20 ranked unobserved production templates, using the log likelihood ratio statistic, along with the factored
non-terminal required to give them zero probability.

PCFG Time (s) Words/s |NT| LR LP F-measure
Right-factored, Markov-0 120 269.6 99 61.4 65.7 63.5
RF, Markov-0, top 100 zeros 157 206.1 152 68.0 72.5 70.2
RF, Markov-0, top 200 zeros 173 187.0 184 68.6 73.4 70.9
RF, Markov-0, top 500 zeros 234 138.3 286 69.1 73.8 71.4
RF, Markov-0, top 1000 zeros 272 118.9 386 69.2 73.9 71.5
RF, Markov-0, top 2000 zeros 370 87.4 596 69.2 74.1 71.6

Table 4:Trials adding in categories to rule out unobserved production templates.

non-terminal set shrinks. However, the efficiency gains come at a cost, with the Markov order-0 factored
grammar resulting in a loss of a full 8 percentage points of F-measure accuracy. Ideally, one would like to
get the benefit of the small non-terminal set, while enforcing key grammatical constraints. We will do this by
using a statistical test to find structural zeros and change the factorization to remove probability mass from
them.

4 Experiments – Structural Zeros

We used the log likelihood ratio statisticG2 to rank unobserved eventsab, wherea ∈ (V ∪ T ) and
b ∈ (V ∪T )+ are a sequence of children in the same productionA → α a b γ, whereα, γ ∈ (V ∪ T )∗

andbγ ∈ (V ∪ T )k for k > 1.

This corresponds to a situation where a sequence of childrenab with parentA are never observed. For use
in equation 9,

ca =
∑

α,b′,γ c(A → α a b′ γ) cb =
∑

α,a′,γ c(A → α a′ b γ)
cab =

∑

α,γ c(A → α a b γ) p(b) = cb
P

b′ cb′

. (11)

Thus,a andb may represent, for example, two events such as DT being theith child of an NP production,
and JJ being the (i+1)th child of an NP production.

In the original or fully factored PCFGs, ifcab = 0 then all productions that fit such a production template
would have probability zero using maximum likelihood estimation. With a Markov order-0 factored PCFG,
however, they would be given probability mass. To remove that probability mass, we can change the Markov
order-0 factorization to create the non-terminalA : b when factoring a sequence of children underA begin-
ning with b. The resulting grammar would provide zero probability massto a non-terminala followed byb
under categoryA.

We looked forb ∈ (V ∪ T )k for k ∈ {1, 2} to find child sequences of length 2 and 3 that do not occur.
Table 3 shows the 20 highest ranked zero occurrence rule templates given theG2 statistic. The top ranked
unobserved rule template is a sequence of two VP children in an S production. In order to provide zero
probability to such productions, when factoring an S production, the S:VP factored category (or one even
more specific, if needed for another zero, such as the second in the list) must be used when the first child in
the factored sequence is a VP.
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Table 4 shows the results of using an order-0 Markov factorization, with factored categories required to
remove probability mass from the the topn ranked unobserved production templates. Using the top 100
increases the size of the non-terminal set by just 53, but improves the F-measure accuracy by 6.7 percent.

5 Conclusion

We presented simple techniques for detecting structural zeros using large natural language corpora and
demonstrated their effectiveness for improving the accuracy of smoothed, factored PCFGs. The methods
outlined can be used to improve model accuracy in other domains. For example, the detection of structural
zeros in images could help improve the accuracy of image modeling by adding data-derived model-constraints
to the recognizer. Using more complex features than co-occurrences of neighboring events may lead to more
accurate techniques for detecting structural zeros. In addition to their use for model enhancement, accu-
rate techniques for detecting structural zeros could help better understand human learning. The problem of
accurate detection of structural zeros may also arise novelquestions in statistical learning theory.
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